SURFACE HYDROCARBON GEOCHEMICAL APPLICATIONS TO THE STAGECOACH FIELDAND NEARBY PROSPECT IN SOUTHCENTRAL NEW YORK STATE 4741 - ERTER - ER- 98 Prepared for # THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Dr. John Martin, Project Manager Prepared by ## DIRECT GEOCHEMICAL SERVICES 400 Corporate Circle Suite R Golden CO 80401 Phone 303-278-1911 Fax 303-278-0104 Email: jv@directgeochemical.com James H. Viellenave John V. Fontana Project Managers #### PYRON CONSULTING 924 Halc Street Pottstown PA 19464 Phone 610-326-1358 Fax 610-326-6668 Arthur J. Pyron, PG October, 1999 ## Table of Contents # SURFACE HYDROCARBON GEOCHEMICAL APPLICATIONS TO THE STAGECOACH FIELD AND NEARBY PROSPECT IN SOUTHCENTRAL NEW YORK STATE |). | INTRODUCTION | . 1 | |-----|--|----------| | | | 2 | | 2.(|) METHODOLOGY | • 4 | | | 2.1 FIELD METHODS | . 2 | | | 2.1.1 SITE SELECTION | | | | 2.1.2 SUMMARY OF FIELD EVENTS | د . | | | 2.2 LABORATORY ANALYSIS | . 4 | | | 2.2.1 SAMPLE HANDLING PROTOCOLS | . 4 | | | 2.2.2. CHEMICAL METHODOLOGY | . 5 | | | 2.3 FREE SOIL GAS ANALYSIS – THERMAL DESORPTION | د | | | 2.3.1. METHODOLOGY | د | | | 2.3.2. DATA REPORTING | 0 | | | 2.3.3. PROBLEMS ENCOUNTERED | 0 | | | 2.4 FLUORESCENCE METHODS | 0 | | | 2.4.1. METHODOLOGY | ɔ | | | 2.4.2 DATA REPORTING | / | | | 2.4.3 PROBLEMS ENCOUNTERED | ,
7 | | | 2.5 PASSIVE SOIL GAS | , | | | 2.5.1 METHODOLOGY | . ,
8 | | | 2.5.2. DATA REPORTING | 8 | | | 2.5.3. PROBLEMS ENCOUNTERED | • | | 3. | DATA INTERPRETATION | 8 | | | 3.1 DATA COLLECTION | 9 | | | 3.1.1. QAQC | 9 | | | 3.1.2. COMPUTER ASSIMILATION | 9 | | | | | | | 3.2 STATISTICAL ANALYSIS | 9 | | | 3.2.1. QUANTITATIVE INTERPRETATIONS | 9 | | | 3.2.2 COMPOSITIONAL ANALYSIS | 10 | | | 3.3 ANALYTICAL RESULTS | 11 | | | 3.3.1 QUANTITATIVE ANALYSIS | 11 | | | 3.3.2 COMPOSITIONAL ANALYSIS—LIGHT HYDROCARBONS | 11 | | | 3.3.2.1 SOIL ANALYSIS FOR LIGHT HYDROCARBONS. | 12 | | | 3.3.2.2 FREE SOIL GAS ANALYSIS FOR LIGHT HYDROCARBONS. | | | | 3.3.3 COMPOSITIONAL ANALYSIS—UV FLUORESCENCE | . 12 | ## Table of Contents, cont' # SURFACE HYDROCARBON GEOCHEMICAL APPLICATIONS TO THE STAGECOACH FIELD AND NEARBY PROSPECT IN SOUTHCENTRAL NEW YORK STATE | 4.0 DEVELOPMENT OF AN EXPLORATION MODEL | 13 | |--|----| | 4.1 STAGECOACH FIELD MODEL AREA | 13 | | 4.1.1 HISTORY OF FIELD DEVELOPMENT | 13 | | 4.1.2 LOCAL GEOLOGY | 13 | | 4.1.3 PRODUCTION DATA | 15 | | 4.1.4 APPLICATION OF SOIL GAS METHODS TO FIELD DATA | 15 | | 4.1.5 INTEGRATION OF SOIL GAS DATA WITH PREVIOUS STUDIES | 16 | | 4.1.5.1 REMOTE SENSING | 16 | | 4.1.5.2 PALEOGEOMORPHIC MAPPING | 16 | | 4.2 NORTH TIOGA COUNTY STUDY AREA | 17 | | 4.2.1 LOCAL GEOLOGY | 17 | | 4.2.2 PREVIOUS EXPLORATION DATA | 18 | | 4.2.3 INTEGRATION OF SOIL GAS DATA WITH PREVIOUS STUDIES | 19 | | 4.2.3.1 REMOTE SENSING | 19 | | 4.2.3.2 PALEOGEOMORPHIC MAPPING | 19 | | 4.3 DISCUSSION OF A NEW EXPLORATION MODEL | 20 | | 5.0 REFERENCES CITED | 22 | | | | APPENDIX 1 - TABLES AND FIGURES #### LIST OF TABLES - TABLE 1.0 FIELD DATA, STAGECOACH FIELD SAMPLING EVENT - TABLE 2.0 FIELD DATA, NORTHERN TIOGA SAMPLING EVENT - TABLE 3.0 -THERMAL DESORPTION SOIL GAS DATA, STAGECOACH FIELD - TABLE 4.0 UV FLUORESCENCE DATA, STAGECOACH FIELD - TABLE 5.0 PASSIVE SOIL GAS DATA, STAGECOACH FIELD - TABLE 6.0 THERMAL DESORPTION SOIL GAS DATA, NORTHERN TIOGA AREA - TABLE 7.0 UV FLUORESCENCE DATA, NORTHERN TIOGA AREA - TABLE 8.0 PASSIVE SOIL GAS DATA, NORTHERN TIOGA AREA - TABLE 9.0 CHEMICAL ANALYSIS OF GAS FROM STAGECOACH FIELD - TABLE 10.0-CORRELATION MATRIX FOR DISCRIMINANT ANALYSIS #### LIST OF FIGURES - FIGURE 1.0 LOCATION MAP OF STUDY AREAS - FIGURE 2.0 METHANE CONCENTRATIONS, STAGECOACH FIELD - FIGURE 3.0 ETHANE CONCENTRATIONS, STAGECOACH FIELD - FIGURE 4.0 C₂+ CONCENTRATIONS, STAGECOACH FIELD - FIGURE 5.0 GAS DRYNESS DATA, STAGECOACH FIELD - FIGURE 6.0 GAS WETNESS DATA, STAGECOACH FIELD - FIGURE 7.0 TYPICAL SOIL GAS CHROMATOGRAM - FIGURE 8.0 THERMAL DESORPTION GAS PROBABILITY MAP, STAGECOACH FIELD - FIGURE 9.0 THERMAL DESORPTION GAS PROBABILITY MAP, NORTHERN TIOGA AREA - FIGURE 10.0 COMPARISON OF CHROMATOGRAMS - FIGURE 11.0 FREE SOIL GAS PROBABILITY, STAGECOACH FIELD - FIGURE 12.0 UV FLUORESCENCE GAS PROBABILITY, STAGECAOCH FIELD - FIGURE 13.0 UV FLUORESCENCE GAS PROBABILITY, NORTHERN TIOGA AREA - FIGURE 14.0 REMOTE SENSING ANALYSIS, STAGECOACH FIELD - FIGURE 15.0 PALEOGEOMORPHIC MAP, STAGECOACH FIELD - FIGURE 16.0 REMOTE SENSING & WELL LOCATIONS, STAGECOACH FIELD - FIGURE 17.0 PALEOGEOMORPHIC THINNING MAP, STAGECOACH FIELD - FIGURE 18.0 PALEOGEOMORPHIC MAP INTEGRATED WITH REMOTE SENSING, STAGE-COACH FIELD - FIGURE 19.0 SOIL GAS DATA INTEGRATED WITH REMOTE SENSING, STAGE-COACH FIELD - FIGURE 20.0 PALEOGEOMORPHIC MAP INTEGRATED WITH SOIL GAS DATA, STAGE-COACH FIELD - FIGURE 21.0 INTEGRATED TECHNOLOGY MAP, STAGECOACH FIELD #### NOTICE This report was prepared by Direct Geochemical Services in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter "NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. NYSERDA, the State of New York, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed or referred to in this report. #### Abstract and Key Words Restructuring of the oil exploration industry has significantly altered the nature of the players in the industry and their approach to exploration, particularly in the U.S. The process of hydrocarbon exploration as conducted by the major multinational companies has become a technology driven, high capital cost strategy designed to locate mega-deposits worldwide. The notion that few, if any, such deposits are present in the continental U.S. has reduced the potential for discovery of untargeted but potentially profitable deposits as by-products of exploration and has thinned the ranks of explorationists. Further, the focus on the use of 3-D seismic diverts attention from a host of sophisticated technologies that require careful integration to be effective in complex environments. The two most fundamental issues in hydrocarbon exploration are the identification of a trap and the existence of hydrocarbons in the trap. The use of paleogeomorphic mapping effectively adds fresh insights to the first question. The second question has been addressed by Surface Geochemical methods for more than 50 years. But, only in the past decade or so has there developed sampling, analytical, quality control, and computer techniques for evaluating the results of field studies. New analytical methods have developed significantly lower detection limits, so that hydrocarbons can be detected at low parts per billion and high part per trillion levels. This allows detection today of C_2 - C_7 + hydrocarbons that were undetectable in the 1980s and C_5 + hydrocarbons that were not even known to exist in the natural environment. In addition, a variety of statistical techniques have been developed to afford better compound and mixture identification and comparison of complex mixtures. These permit sophisticated modeling of geochemical data that was not possible before the 1990s. Surface geochemical data provides potentially three key pieces of information about a site or region. First, it provides broad-based evidence of petroleum hydrocarbon presence and variations in concentration. Second, using both generalized and site specific compositional data, it can yield valuable prospect specific information to target detailed investigations and drilling programs. Finally, under the proper conditions, it can suggest some structural character in areas of high fracturing and faulting. Knowledge of the presence and the types of hydrocarbons in an area provided a powerful basis for further investigation and exploitation. When the geochemical data are integrated with other low cost technologies, it can define favorable areas for development and the most productive wells in existing fields. The benefit of these tools, especially when combined into a coherent exploration program, is that they are inexpensive (i.e., a fraction of the cost of commercially available 2-D seismic) and are accessible to even the smallest independent company. These data may be applied in either extremely small site-specific packages or on regional or basinal studies. Moreover, they can help answer the basic questions concerning the presence of petroleum and the existence of a trap. When properly used, they can enable virtually any size operator to enhance and support his drilling and development decision-making by a scientifically valid process. The result of the process is a valid and inexpensive exploration model that can be sized for a client's needs. ## Acknowledgements Pyron Consulting would like to thank the following individuals: John Martin, NYSERDA, Rich Nyahay, NY State Geological Survey, Eric Shyer, NYS DEC, Mineral Resources Division, Wendy Mead and the Mead Family, and Lyman Rudolf. #### 1.0 Introduction Restructuring of the oil exploration industry has significantly altered the
nature of the players in the industry and their approach to exploration, particularly in the U.S. The process of hydrocarbon exploration as conducted by the major multinational companies has become a technology driven, high capital cost strategy designed to locate mega-deposits world-wide. The notion that few, if any, such deposits are present in the continental U.S. has reduced the potential for discovery of untargeted but potentially profitable deposits as by-products of exploration and has thinned the ranks of explorationists. Further, the focus on the use of 3-D seismic diverts attention from a host of sophisticated technologies that require careful integration to be effective in complex environments. This situation is particularly applicable in the relatively mature found in the Lower 48 states. Independent explorationists require other technologies because they have less access to capital. Not coincidentally, the technologies that were utilized in this project (paleogeomorphic mapping, remote sensing, and especially surface geochemistry) are exactly the types of technologies that independents can afford. These tools provide answers to the questions that are routinely asked by independents (i.e., where are the hydrocarbons, how can I reduce my explorations costs and increase my success ratio, and how can I maximize my return on investment). Furthermore, these technologies are the types of tools that can be applied to field extension or in-fill development. They can also be used to model analog fields in a particular basin. Most importantly, these tools can be applied to both international concession work and to underdeveloped domestic basins, especially those basins with limited subsurface data, where the lack of competition allows the acquisition of huge, affordable lease blocks and where success will not be diluted by the "herd Mentality". The two most fundamental issues in hydrocarbon exploration are the identification of a trap and the existence of hydrocarbons in the trap. The use of paleogeomorphic mapping effectively adds fresh insights to the first question. The second question has been addressed by Surface Geochemical methods for more than 50 years. But, only in the past decade or so has there developed sampling, analytical, quality control, and computer techniques for evaluating the results of field studies. New analytical methods have developed significantly lower detection limits, so that hydrocarbons can be detected at low parts per billion and high part per trillion levels. This allows detection today of C_2 - C_7 + hydrocarbons that were undetectable in the 1980s and C_5 + hydrocarbons that were not even known to exist in the natural environment. In addition, a variety of statistical techniques have been developed to afford better compound and mixture identification and comparison of complex mixtures. These permit sophisticated modeling of geochemical data that was not possible before the 1990s. The benefit of these tools, especially when combined into a coherent exploration program, is that they are inexpensive (i.e., a fraction of the cost of commercially available 2-D seismic) and are accessible to even the smallest independent company. These data may be applied in either extremely small site-specific packages or on regional or basin studies. Moreover, they can help answer the basic questions concerning the presence of petroleum and the existence of a trap. When properly used, they can enable virtually any size operator to enhance and support his drilling and development decision-making by a scientifically valid process. The result of the process is a valid and inexpensive exploration model that can be sized for a client's needs. DIRECT GEOCHEMICAL 1 ## 2.0 Methodology Direct Geochemical Services and Pyron Consulting, under the auspices of NYSERDA, completed a surface geochemical survey demonstration project in selected areas of Tioga County, NY, during the spring and summer of 1998. Hydrocarbons in free soil gas (passive collection) and soil were collected for analysis using two different and complementary methods: Gas Chromatography and UV Fluorescence. Samples were collected in two areas, a geologic (and therefore geochemical) model area and a prospect area as described below: - 1. Model Area—Stagecoach Field in Tioga County, NY. - 2. Prospect Region—Northern Tioga County, NY. A regional location map is provided as Figure 1.0. #### 2.1 Field Methods #### 2.1.1. Site Selection The Stagecoach Field was selected as a model area because it had readily accessible data. In addition, it is a relatively unique deposit, which, because of its size and productivity, makes it an analog for future fields that may be discovered in the Appalachian Basin. It promised to yield a potentially useful and definitive surface geochemical signature that could be used to develop an exploration model for the region. The original "Prospect" area identified in the project proposal was in the Catskill region of New York. Initial investigation by the authors had indicated that permits for access would be reasonably available. Unfortunately, it was impossible to acquire permits, and physical access along public rights of way was not forthcoming. In addition, because much of this area is designated for zero development by state law and because it is within the environmentally sensitive watershed for New York City, it was determined that no future development of the resources would be permitted. This would mitigate the industry application of the technique if we were successful in our application. Therefore, the investigators identified an alternative area in the vicinity of Spencer, NY, in Northern Tioga County. The area consists of approximately 15 square miles along the valley south of Spencer NY in a very loose grid of samples with an average spacing of approximately 0.5 miles. It was determined that for this type of survey, a sampling spacing of 0.25 mile would adequately represent the approach an explorationist might take in an effort to generate and evaluate larger scale prospects in a region. In the Stagecoach Field, the distribution of well bores, including productive wells, is concentrated within a 0.5-mile wide swath. This allowed the concentration of the sampling grid. It was intended from the beginning to acquire both a soil sample and a VaporTecTM passive sample at each location. All sampling was conducted within the road right-of-way to avoid private property, or in the vicinity of producing and dry wells #### 2.1.2 Summary of Field Events Prior to the indication of fieldwork, a grid pattern was established over both the prospect area and the model area on the base maps. It was decided that a 0.25-mile spacing would be adequate for the initial survey. After completing this process, I received from Belden and Blake Corporation provided a newly created base map that precisely located the existing wells. Two different field sampling methods were applied to the project: free soil gas analysis was completed using passive soil gas samplers (VaporTecTM); and soil samples were collected for analysis of sorbed hydrocarbons. Sampling of the Stagecoach Field was conducted on 5/12, 5/13, and 5/14. Sampling of the prospect area was completed on 5/14 and 5/15. A total of 85 samplers and soil samples were collected from the Stagecoach Field. An additional 52 samplers were installed in the prospect area, between Spencer and West Candor, NY. Mud and inaccessible roads hampered fieldwork. The period before the field activities was marked by seven days of rain. Surface water was flowing over all of the area, and many of the locations were therefore inaccessible. Several of the existing well location roads were gated and locked and could not be accessed. Both the model and prospect areas had a very poorly developed soil profiles with a lot of rocks and clay. In only a very few instances was there a soil profile that was deeper than 8.0 inches. This forced a field modification of sampling location and VaporTecTM sampler installation. Samplers were installed along the right of way of the road system. Preferential sampling locations were: - Along a hill or roadcut above the drainage pattern of the area. - In wooded (i.e., undeveloped) areas above the drainage of the area - At remote locations along lightly traveled dirt roads - Along access roads to wells In all sampling, care was taken to avoid areas potentially contaminated by drilling or operating processes. Sampling avoided surface drainage and occurred primarily on undisturbed land. In addition, roadside bar ditches were avoided and sampling occurred on the far side of the ditches. With the exception of actively producing wells, it was impossible to find abandoned wells. Apparently, the common practice is to "stub off" abandoned wells approximately 3.0 ft beneath the surface and to cover them to grade. There are no apparent markers for abandoned wells. Because these wells could not be found, and because all roads to the former wellhead had long since disappeared, it was impossible to sample directly at the wellhead. Instead, samplers were placed as close as possible to the presumed location along existing roads. At existing wells, a VaporTecTM sampler was installed within a 50-foot radius of the wellbore, away from the existing surface equipment and away from the area in which the drilling rig was located during installation. The lack of soil profile precluded the proposed installation of a sampler at 3.0 feet. Whenever possible, the sampler was installed at the highest point locally, above the surface drainage. At each sampling location, a marker flag was installed. In areas in which high grass or trees were involved, ribbon flagging was also used to identify where the samplers were placed. Each soil sample was taken from approximately 8.0" below surface. Rocks and pebbles were removed, as was loose organic matter (roots, grass, twigs, etc.). Eighty-five (85)
locations were identified for sampling at the Stagecoach Field. VaporTecTM samplers were installed and soil samples collected from each location. Between the installation of VaporTecTM samplers and retrieval many were lost, allowing retrieval of only about 60 of them. In particular, locations near dry wells were lost preferentially to others. This minimized the effectiveness of the use of passive samplers. Most of the losses were due to human interference. The authors' experience is that this loss rate is unusual; normally the recovery rate is approximately 95%. Subsequent to the initial field activity, a second sampling event was completed in late Octoberearly November, 1998. An additional 8 soil samples were collected in the prospect area. Table 1.0 and 2.0 provide sample data for both the model and prospect areas. #### 2.2 Laboratory Analysis Several steps are taken to assure the quality of the data reported from the lab. Among these are: - Log-in procedure - Sample holding and storage - Instrument calibration, both initial and continuing - Surrogates - Duplicates - Blanks These procedures provide assurance that the samples are handled and analyzed in identical and defensible ways and that the interpretations are not related to variations in analysis, but variations present in the soil or soil vapor in the field. ## 2.2.1 Sample Handling protocols Soil samples were received from the field in sealed glass jars. The VaporTecTM samplers were contained in sealed glass 40-ml vials. Both sample types were logged into the lab and each individual container was given a unique log in number. The log-in applies to all samples of any type received in the Direct Geochemical laboratory, and applies regardless of analytical method used. It is a tool to track all samples from receipt to final data delivery and interpretation. All sample jars and the VaporTec™ samplers were intact without loss of sample or loss of seal. ## 2.2.2. Chemical methodology Gas chromatography was run on all of the soil samples and on all of the VaporTecTM samplers received from the field. Two types of chemical analysis were run: Thermal Desorption-Gas Chromatography and UV Fluorescence. Gas chromatography operates on volatile or semi-volatile compounds in the vapor phase. To get the hydro-carbons into the vapor phase, it was necessary to heat the soil sample or the VaporTecTM sampler in a proprietary device to a temperature which will cause desorption of the hydrocarbons from the solid phase into the vapor phase, but not cause pyrolysis. An aliquot of the desorbed hydrocarbons is then injected directly onto the column for analysis on an HP 5890 Gas chromatograph. Prior to running the analysis, the gas chromatograph is calibrated to identify and quantitate the compounds analyzed. Direct Geochemical selected a range of hydrocarbons from methane to hexane and performed a multi-point calibration. Following calibration, a system blank was run to assure that there was no carry-over and that the system was clean. Then, each sample was run in turn. #### 2.3 Free Soil Gas Analysis - Thermal Desorption #### 2.3.1. Methodology Free soil gases are those that are actively migrating from subsurface sources and are trapped in the process. Absolute concentrations of free soil gases are generally lower in soils. In most cases, soil samples are taken at approximately 3.0-4.0 feet to minimize near surface losses. In both areas, soils were very shallow, preventing such sampling. Therefore, soil samples were taken from the upper 8.0" and placed in a 4 oz. (125 ml) jar equipped with a Teflon lined lid. The soil is packed into the jar to minimize the headspace and maximize the retention of volatile hydrocarbons. The jars are then packaged and returned to the lab for analysis. Sampling of soils has the obvious advantage of simplicity and speed. It requires only a single trip to the field and can be accomplished with the simplest of tools. The primary disadvantage is the variability of soil and the processes that affect the concentration and composition of hydrocarbons. Coarse-grained or highly inorganic soils tend to sorb hydrocarbons less efficiently that those that are fine grained and/or contain larger amounts of organic carbon. Furthermore, significant variations in these properties can affect the absolute concentration of total hydrocarbons. Moreover, the moisture content of soils can impact the concentration hydrocarbons. These can adversely affect the interpretation of data, particularly the quantitative analysis. #### 2.3.2 Data Reporting The data are presented in two formats: tabulated digital and analog. The tabulated digital data are included in this report in Appendix I. These tables present the absolute concentration of each identified hydrocarbon compound in the aliquot of headspace analyzed, with a lower limit of detection of about 5-10 parts per billion by volume (ppbv). The analog output is the chromatogram. Selected chromatograms also are shown in Appendix I. The chromatogram is a powerful visual tool for examining complex data. #### 2.3.3 Problems Encountered No problems were encountered during the thermal desorption analysis phase of the project. #### 2.4 Fluorescence Methods #### 2.4.1. Methodology UV Fluorescence analysis was performed on all of the soil samples. Each sample was carefully sieved for the silt and clay fraction to -60 mesh and then subjected to intense solvent extraction using a proprietary solvent. The extraction incorporated a proprietary process of temperature control and agitation, followed by gravity separation of the solvent from the soil. An aliquot of the solvent was then placed in the beam of UV light in a Perkin-Elmer MPF-44 Fluorescence Spectrophotometer. As with the gas chromatography, the instrument is first calibrated and then a blank is run to assure that there is no carryover. The acquired data were tabulated across a scan range of 250-500 nanometers (nm). Emission and excitation are scanned synchronously. The resulting data are expressed in two formats. The first is digital, the results of which are shown in Appendix I, showing the Fluorescence intensity at 5 specific wavelengths. In addition, a Fluorescence Spectrum can be prepared showing the continuous variation in fluorescence intensity with wavelength. Example spectra also are shown in Appendix I. The results from the soil analysis were placed into a database for processing and interpretation. #### 2.4.2 Data Reporting The data are presented in two formats: tabulated digital and analog. The tabulated digital data are included in this report in Appendix I. These tables present the absolute concentration of each identified hydrocarbon compound in the aliquot of headspace analyzed, with a lower limit of detection of about 5-10 parts per billion by volume (ppbv). The analog output is the spectrum. Selected spectra are shown in Appendix I. #### 2.4.3 Problems Encountered No problems were encountered during the UV Fluorescence analysis phase of the project. #### 2.5 Passive Soil Gas #### 2.5.1. Methodology Instantaneous sampling of free soil gas often results in the reporting of methane through propane and little else. Because samples often contain such low concentrations of indicator compounds, they require sampling at depths of 5-20 feet. Passive gas sampling affords improved reporting because it allows the concentration of hydrocarbon gases on a non-polar sorbent (e.g., activated carbon). The passive sampler employed in this project is the VaporTec™ sampler, manufactured by Direct Geochemical. It consists of an aluminum rod coated with granular, activated carbon, using an inert inorganic cement. The rod is sealed during manufacture within a clean glass housing (40 ml VOA vial) and shipped to the field. The cap is removed in the field and the vial is placed into a shallow (6") core hole in the soil. It is buried and left to trap and concentrate hydrocarbons over a two to three week period. They are then retrieved, sealed, and returned to the laboratory for analysis. The primary advantage of the VaporTecTM sampler is that the trapping matrix of all samples is identical, and therefore, there is no variation in concentration due to sampling or sampler. The major disadvantage is that the sampler installation and retrieval are done on separate trips to the field, adding time and cost to the project. In areas with highly variable soils, especially tending toward granular types with little organic carbon, VaporTecTM samplers assure a high quality, uniform gas sample. #### 2.5.2 Data Reporting The data are presented in two formats: tabulated digital and analog. The tabulated digital data are included in this report in Appendix I. These tables present the absolute concentration of each identified hydrocarbon compound in the aliquot of headspace analyzed, with a lower limit of detection of about 5-10 parts per billion by volume (ppbv). The analog output is the chromatogram. Selected chromatograms are shown in Appendix I. The chromatogram is a powerful visual tool for examining complex data. #### 2.5.3. Problems Encountered Other than the recovery problems discussed above, no problems were encountered during the passive gas sampling analysis phase of the project. ## 3.0 Data Interpretation The basic interpretation approach involved the assumption that an existing, relatively well defined and characterized producing field or accumulation, if properly sampled and interpreted, could be used to develop a geochemical model or analog. Therefore, it was necessary to be able to "map" the extent of the known accumulation or productive zone in order to validate the model. The interpretation of the data involved two independent evaluations, followed by an integration of chemistry and geology. The first, and most traditional, approach was to evaluate and map the absolute concentration of individual and groups of hydrocarbon species (or classes in UV Fluorescence) identified in the
survey. The second approach is to evaluate the compositional variation. Compositional interpretation largely discounts the absolute concentration of hydrocarbon species and concentrates on their relative abundance. The results of analysis are shown in tabular form (Tables 3.0-8.0) in Appendix I. The analysis of both the soil and free soil gas trapped on VaporTecTM samplers revealed the presence in highly variable amounts of alkanes (paraffins) from methane through hexane (and beyond in very low concentrations). Concentrations ranged from hundreds of ppm to the low ppb levels. In addition, at least two olefin compounds (ethene and propene) were observed and quantified. Several unidentified chromatographic peaks were also observed consistently through the survey. These were tentatively identified as butene, benzene, toluene, pentene, hexene, and cycloalkanes of the C_{5-6} range. These compounds were not quantitated. To aid the analysis, Belden and Blake provided a representative sample of gas from the field. The results from the soil, VaporTecTM, and Stagecoach Gas analyses were entered into a data base for processing and interpretation using a sophisticated statistical procedure. #### 3.1 Data Base Development and Management #### 3.1.1. QAQC Each sample chromatogram or spectrum is visually inspected for quality assurance by the Laboratory Manager. Following inspection and approval, the digital data are entered into an Excel spreadsheet. The data entries are double-checked by one of the clerical staff in the lab. Chromatograms and spectra are printed and assembled into a file. Raw chromatographic, spectral, and digital data are backed up onto the server and onto floppy diskette. The Excel file of light hydrocarbon data and UV Fluorescence data are then imported into a data-base for statistical treatment. #### 3.2 Statistical Analysis #### 3.2.1. Quantitative Interpretations Historically, the primary interpretive approach that is used in projects of this type is to map variations in concentration of individual or groups of hydrocarbons. There is almost always a strong variation in concentrations across a survey area. It is vital to appreciate how that variation relates to the presence of a subsurface hydrocarbon accumulation. Ideally, deep soil samples are used for quantitative interpretation, minimizing surface effects. Due to lack of soil depth, shallow samples were used here. The proprietary thermal desorption process operated by Direct Geochemical, however, overcomes much of this disadvantage. Two general models of the relationship between soil gas concentration and subsurface accumulation have been advanced through the years. The first, and most "logical", is that subsurface accumulations migrate vertically and produce greater than background surface soil gas concentrations above the accumulation. This implies a largely vertical migration from subsurface to surface. Thus, "anomalies" would be apical, lying immediately over the accumulation. A second theory has also been advanced - the "halo" concept. Under the various manifestations of this theory, the migrating hydrocarbons can create a cementation of the soils in the shallow subsurface, reducing the rate of migration of residual hydrocarbons. Cementation is most effective over the center of the reservoir and least so at the edges, resulting in greater leakage at the edges. Therefore, the regions around the perimeter of the accumulation may actually exhibit higher concentrations that those over the accumulation. In addition, it is possible for somewhat depressed concentrations to appear over existing fields that have been produced and experienced pressure drops. Direct Geochemical plotted concentrations of each individual hydrocarbon, groups of hydrocarbons, and ratios of hydrocarbon concentrations (wetness, dryness). Example maps from the Stagecoach Field model area are provided as Figures 2.0 through 6.0. #### 3.2.2 Compositional Analysis Compositional analysis takes into account the presence, the absence, and the relative abundance of hydrocarbon species. It is possible to apply a variety of multivariate analytical techniques to evaluate the mixture of species, particularly in relation to mixtures that are representative of known geological conditions. While not essential, whenever it is possible, compositional analysis develops a chemical model or analog from existing production or at least a documented accumulation. The ideal chemical model incorporates geologic information (presence and termination of reservoir conditions), lithology (log analysis), reservoir fluid analysis, well control, structural analysis, and surface geochemical information. The objective is to develop a chemical model that allows the differentiation of potentially productive from demonstrably non-productive or non-commercial reservoirs. Information on the boundaries of an accumulation, the geologic conditions that create them, and the chemical features in the data that are most diagnostic of that condition enable 9 development of such a model. To start, examine the values in Table 9.0, which is a detailed analysis of the gas from the Stagecoach Field. Typical of dry gases, it is largely methane and ethane. Unlike most gas analyses for heating value purposes, when exploration is involved, it is vital to extend the range of analysis up to at least the C₆ level. In doing so, we observe detectable concentrations of C₃-C₅ hydrocarbons, with a trace of C₆. The presence of heavier hydrocarbons gives direct evidence of the presence of thermogenic subsurface accumulations. Typical surface geochemical results, as shown in Figure 7.0, contain all of those compounds and more. Background conditions are ordinarily quite variable, both in concentration and com-position, resulting from a wide variety of influences and sources in the environment, including vegetative organics. Potentially productive conditions are more uniform in composition, reflecting a significant source of relatively uniform hydrocarbon character that compositionally, if not quantitatively, overwhelms the background. The data set used to conduct compositional analysis is often very complex, involving 8-20 individually identified compounds. Conventional graphical methods can only display 2-3 variables at a time. And, traditional statistical methods cannot easily encompass such complex data and present it in an understandable format. Bi-variate analysis of data requires a large number of iterations and may yet be unable to explain the relationships in which 3-5 components are necessary. Multivariate analysis processes a large number of variables at the same time, and can differentiate those variables that are related to known conditions and those that are not. The nature of these variables can be compared to the chemical features of known conditions (e.g., composition of natural gas). The technique can then be used to classify samples that are "unknown" as to their similarity to known conditions. Final classification was conducted using discriminant analysis. To effect discriminant analysis, samples that were taken in the vicinity of either producing or dry wells (the known geologic conditions) were used to characterize the surface chemical features that best characterize production and are different from background (dry wells). All unknown samples are then compared to the matrix developed by the known samples and the residual probability calculated. The residual probability is plotted on the map as a "gas probability" and contoured. Figures 8.0 and 9.0 are the gas probability maps for the Stagecoach Field model area and the Northern Tioga County prospect area. #### 3.3 Analytical results #### 3.3.1 Quantitative Analysis Examination of the data in Appendix I and the maps in this section reveal that, on average, the concentration of virtually all hydrocarbons in the Stagecoach Field are lower in the off-field areas (i.e., background) than those within the field. This appears to be along the lines of the "halo" concept described above. However, because sampling did not extend very far into background (it should have gone an additional mile or two), it is impossible to specifically interpret this as the case. In addition, while the average concentration of hydrocarbons is somewhat lower than expected, there is quite a variation among individual compounds. Mapping of either groups or individual compounds allows a statistically significant variation that can accurately map the extent of gas accumulation in the Stagecoach Field. Therefore, the concentration data should not be used as a stand-alone, independent model for exploration for gas in the region. Figures 2.0 through 6.0 illustrate this point. These figures, showing plots of absolute methane, ethane, and C_{2+} concentrations, exhibit similar, but not identical patterns. None of them (using either high or low concentration cut-offs) map the productive part of the field with better than 60% accuracy. Two possible and traditional enhancements of quantitative data are shown in Figures 5.0 and 6.0. Figure 5.0 depicts the percent methane, or gas dryness. Figure 6.0 shows percent wetness, which is the ratio of C_{2+} divided by C_{1+} hydrocarbons in the soil gas. Neither effectively maps the field. Other ratios were examined as well, exhibiting similar patterns. The reason for this result is that methane (and, to a certain extent, ethane) are derived from both thermogenic and biogenic sources. In a gas province, it is vital to be able to utilize higher carbon number compounds, but in a compositional manner. #### 3.3.2 Compositional Analysis—Light Hydrocarbons Both light-hydrocarbon data sets, soil and VaporTecTM were tested using the discriminant analysis. An evaluation of the correlation matrix, seen in Table 10 indicates that the C₃ to C₅ hydrocarbons, less the olefins, are the primary discriminants or chemical factors that define the gas prone areas. This is visually
observed in Figure 10.0, which overlays the chromatograms from a background locations (dry well) and a producing location. The producing area exhibits a significantly higher relative abundance (using a cross-plot) of higher carbon number compounds than the background. This is a characteristic that is quite common in the experience of the authors. The identity of which hydrocarbons and what exact carbon number range is dependent on local conditions. After calculating gas probability values, the resultant maps are shown in Figures 8.0 and 9.0, for Stagecoach and North Tioga areas. #### 3.3.2.1 Soil Analysis for Light Hydrocarbons. The residual gas probability for the Stagecoach Field, as based on the analysis of soil samples in the field and gas chromatography, is shown in Figure 8.0. The result is apical in nature and centered directly over the productive zones in the field. The accuracy, defined by well control, is very good, better than 90%. As shown below, it also correlates well with non-geochemical factors. The map also indicates some potential for additional drilling sites. #### 3.3.2.2 Free Soil Gas Analysis for Light Hydrocarbons. The free soil gas compositional interpretation is shown in Figure 11.0. The results are similar to that from the soil analysis in the core of the field, but variations at the fringes diminish the overall accuracy to the 80% range. An evaluation of the data suggests that the primary reason is the very limited number of "known" background samples in the data set, with only 2-3 samples taken at dry wells. These results would be quite acceptable if used for reconnaissance or high-grading purposes; the soil analysis results would better serve for evaluating specific drilling locations. ### 3.3.3 Compositional Analysis—UV Fluorescence In addition, the UV fluorescence data from soils was also evaluated using discriminant analysis, and using the same model parameters as the Light Hydrocarbons. Because the fluorescence responds largely to aromatic hydrocarbons, and the content of the gas is largely devoid of aromatics, it was not expected that the UV Fluorescence would be a direct indicator of gas accumulation, as the light hydrocarbon analysis is. However, it was appropriate to map the indicator (Figures 12.0 and 13.0). The UV Fluorescence data appears to map the core of the Stagecoach Field, with less overall accuracy than the light hydrocarbons, but in a reasonable fashion for broad-scale reconnaissance. Without considering other, non-chemical factors, the causes for this reasonable correlation between high carbon number organics and dry gas accumulation are not obvious. In the experience of the authors, the primary chemical relationship is probably with a secondary alteration effect in the soil, perhaps related to vegetative interaction with migrating hydrocarbons. The authors have frequently observed the presence of mono- and sesqui-terpenes in areas with high gas leakage and abundant vegetation (both associated with petroleum and mineral exploration). This occurs in association with the intense faulting and fracturing. Unfortunately, the scope of the present investigation did not allow for further inquiry and testing into the root causes of such UV Fluorescence observations. ## 4.0 Development of an Exploration Model #### 4.1 Stagecoach Field Model area #### 4.1.1 History of field development The Stagecoach field was discovered by Quaker State in 1986 and is now owned and operated by Belden and Blake Corporation. The Stagecoach Field is located in southeastern Tioga County, New York. It was discovered in 1987 with the drilling of the Belden and Blake (Quaker State) #1 Fyock well. The field was confirmed with the drilling of the Belden and Blake (Quaker State) #1 Racht well. Operation of the productive wells in the field, and additional developmental drilling, was transferred to Belden and Blake Corporation in the early 1990's. Currently, there are 15 productive wells and 18 dry holes in the Stagecoach Field area. As of early 1996, cumulative production from the field was 7.88 billion cubic feet of natural gas, with close to half of that production coming from two wells, the Belden and Blake W. Widell #1 (2, 295.36 MMCF) and the Belden and Blake E. Campbell #1 (1,792.65 MMCF). ### 4.1.2 Local geology Tioga County was chosen because it is located at the transition of the Devonian Catskill Delta from marginal marine to deep marine depositional environments. The deeper Devonian basin lay to its south and east. Deposition in the proto-basin transitioned from carbonates in early Devonian time through clean sandstones in the middle Devonian though dark organic shales in the Middle through Upper Devonian as the Catskill Delta prograded into the basin proper. Upper, Middle and Lower Devonian rocks of south central New York constitute one of the more complete Middle Paleozoic stratigraphic sections in North America. There are three general groupings of rocks: the Genesee Group, the Hamilton Group, and the Helderberg-Onondaga Group. The Genesee Group consists of a thick sequence of organically derived shales. In many studies, the Genesee is considered one of the more significant tongues of deposition that comprise the Catskill Delta. Locally eroded, the sequence is not completely present in Tioga County. At the base of this sequence lies the Tully Limestone. Based on the analysis by Heckel (1966), the Tully is a significant formation in that deposited on and represents a significant unconformity between Genesee and Hamilton sequences. In addition, the Tully also represents a significant lateral facies change from a clastic equivalent further east, to a carbonate over much of the Appalachian Basin province. The Hamilton Group is considered by many observers to be the precursor of the Catskill Delta. It is composed on a thick sequence of black and gray organic shales that apparently represent a cyclical depositional cycle, as well as a perceived upward coarsening of sediments within a given cycle (Landing and Brett, 1991). Within this sequence of rock, two formations, the Cherry Valley Limestone and the Marcellus Shale have been identified as easily recognized markers within the Hamilton Group, and have been used for structural isopach mapping. The last Devonian interval of significance in this investigation is the Helderberg Onondaga grouping. This interval includes a basal carbonate member (the Helderberg Group), a middle arenaceous sandstone member (the Oriskany Sandstone) and upper carbonate member (the Onondaga Limestone Group). These rocks were deposited in a near shore marginal marine transition zone. They are of importance in this study because the Helderberg and the Oriskany form significant reservoirs in the Appalachian Basin. As a result, there is a great deal of subsurface data on these intervals, especially as a result of exploratory drilling. The Devonian rocks of Tioga County unconformably overlie Silurian evaporites of the Salina Group. A Silurian Age "salt basin" formed to the south of Tioga County, and allowed deposition of gypsum, anhydrite and halite. Rickard (1969) noted the similarity and uniformity of deposition of the evaporitic sequence in both the Appalachian and Michigan Basins, with the exception that the barrier reefs found in the Michigan Basin are not found rimming the Appalachian Basin. There are numerous mapped anticlines and synclines in the study area. Many of these features are the result of Appalachian orogeny, and may have had minimal effect on the entrapment of hydrocarbons. The identified localized and regionalized faulting which apparently was contemporaneous with Middle and Upper Devonian deposition. The cause of this faulting is not well known, but is related to either deep basement readjustment, or adjustment associated with the post-Acadian orogeny. Previous published reports on the Stagecoach Field include papers by Pyron (1997, 1997b). A series of maps based upon both structural and isopachous thickness of select intervals is found in the first of these publications. The following generalizations were presented for the Stagecoach Field: - 1. Without exception, the structural maps created on various formation tops were neither sensitive nor reliable enough to relate to cumulative production. As a result, these maps were not reliable indicators of production. The structure map based upon the Top of Devonian datum was interesting because it apparently shows the location of fault blocks under the field boundaries. Given this interpretation (which has not been verified either by seismic investigations or evaluation of published structure maps), it is easy to understand why faulted reservoirs are so significant to production in this field. - 2. The isopach maps which were prepared are slightly more reliable indicators of production, but still not sensitive enough to equate to cumulative production histories. Of greater interest are the isopach maps showing thickness of the Oriskany Sandstone, and the thickness map of the Tully Limestone. In the former, the interpreted thickness of the Oriskany sand increases to greater than 90 feet along the center of the field. (It is important to recognize that sand thickness is not an indicator alone of reservoir quality; the presence of fractures is also very important). The Tully Limestone isopach map shows thinning of this interval over the top of the field. - 3. Finally, a paleogeomorphic or synchronous high map was constructed for the field. This map identified interval thinning typical of a paleogeomorphic high. Thinning of the mapped interval can be correlated to hydrocarbon accumulation and production. Those wells that are proximate to the 600-foot thickness interval on this map show the best production, most probably because fractures intersected by the well bore tap the prime reservoir, which lies within the 600-foot interval. As verification of this analysis, the production history of select wells in
the field provided a good basis for appraising the validity of application. The Belden and Blake (Quaker State) #1 Widell well (cumulative production - 2.295 BCF) has a First Derivative Interval thickness of 644 feet, while the Belden and Blake (Quaker State) #1 Campbell well (cumulative production - 1.793 BCF) has a First Derivative Interval thickness of 645 feet. By comparison, the Belden and Blake (Quaker State) #1 Fyock (cumulative production - 8.9 MMCF) has a First Derivative Interval thickness of 718 feet. This corroborates the assumption that wells located closer to the paleogeomorphic thin (i.e., thinning of the interval) with well established fractures will host more economic production than similarly fractured wells located in thicker paleogeomorphic intervals. #### 4.1.3 Production data Production in the Stagecoach field is listed by the state agency as being from the upper Helderberg Formation. Discussion with the field operators suggested that they believe that production is associated with a significant fracture that intersects the Oriskany Sandstone. Of even greater interest is that these wells are producing dry natural gas, with very little associated water. Based on review of NYDEC files, it appears as though many of these wells are producing through natural flow, with no completion or induced fracturing treatments. #### 4.1.4 Application of soil gas methods to field data The use of geochemical methods in the exploration for hydrocarbons arose from the knowledge that there were surface manifestations of hydrocarbons at depth that could not easily be seen by skilled observers. The goal of explorationists and investors was to use the method to quantify and qualify those manifestations to maximize exploration success. #### 4.1.5 Integration of soil gas data with previous studies In order to provide context to the geochemical analysis of the model area, previously published data on the Stagecoach Field were analyzed. In addition, data from a remote sensing study completed by one of the team members was provided to pro-vide further context. The discussion which follows is a shorten version of a detailed discussion. #### 4.1.5.1 Remote sensing Remote sensing imagery analysis has been used with varying degrees of success to locate hydrocarbon reservoirs. Most applications involve site specific determinations as to whether hydrocarbons will be encountered when drilling occurs. A second use of remote sensing interpretation methodology (which has been little discussed) involves the strategic application of remote sensing interpretation methods to appraise the hydrocarbon potential of a country or region. Both methods enhance the accuracy of evaluation of hydrocarbon potential prior to the expenditure of large sums of investment capital. A more detailed analysis of the remote sensing data can be obtained by contacting Pyron Consulting. The remote sensing analysis (Figure 14.0) is extracted from a larger study of the Central New York area. The extracted interpretation has been annotated by installing a layer of data that shows the location of wells in the Stagecoach Field. The interpretation of this image revealed a variety of well established NE-SW and NW-SE trending lineaments. In addition, during the interpretation, a bias to ignore prominent E-W features was imposed because this direction tracts the processing graining of the image. A series of N-S lineaments reflect local fault structures, or internal fracturing of the basement and overlying rocks associated with compressional and extensional tectonics. There are also two E-W lineaments that follow the trend the Elmira Anticline, a surface feature. Given the frequency of the lineaments, and the over-lapping nature of the patterns, it is logical to conclude that fracture porosity will enhance the productivity of reservoirs when they are encountered. The observed tonal anomalies are very distinct, and have a bright character, which implies that the reservoir rocks are competently sealed, and that they host non-depleted accumulations of hydrocarbons. These reservoirs might be gas driven, and might host significant associated reserves of natural gas. Significantly, The existing production in the area does not account for the intensity or density of the tonal anomalies. This suggests that additional, non-developed reservoirs may exist below those currently developed. #### 4.1.5.2 Paleogeomorphic mapping Based upon previously published data, one of the most diagnostic methods for analyzing the Stagecoach Field involves the application of paleogeomorphic mapping. Paleogeomorphic mapping involves the location of paleo-structures (ancient structures) which had reservoir parameters conducive to the entrapment and preservation of hydrocarbon source material during primary migration. Paleogeomorphic maps are created by stratigraphic interpretation of well logs, sample logs, and electric logs, and by mapping thicknesses of rock (stratigraphic sequence) indicative of depositional conditions. Thinning of the chosen map interval is directly related to the presence of hydrocarbon reservoirs and is related to porosity, permeability, high oil/low water content and a trapping mechanism (most often diagenetic). In the model area, the paleogeomorphic map (Figure 15.0) for the Stagecoach Field identifies significant thinning of the map interval. The theory of the development of this map is discussed in Pyron (1997 b). Optimum reservoirs occur in and immediately proximate to the areas of thinning. Further, there are areas of thinning that have not been tested by the drill. Additional discussion of the paleogeomorphic mapping technique can be obtained by contacting Pyron Consulting. #### 4.2 North Tioga County Study area #### 4.2.1 Local geology The stratigraphy of the Northern Tioga County Prospect Area is similar to that identified in the Stagecoach Field area. On a regional basis, Devonian strata begin to thin to the north, and thicken to the south and southwest. In addition, there is a pronounced facies change from a marine to marginal marine (delta) to continental from the west to the east. Key formations on the regional evaluation of Tioga County included the Tully Limestone, the Onondaga Formation, the Oriskany Sandstone and the Helderberg Group. The base of data used in this investigation is limited to well logs which as a generalization do not completely penetrate the Helderberg Formation. Given this limited data, key structural, isopachous, and paleogeomorphic maps were prepared for the second study area. Regional studies completed by Rickard (1969, 1973, 1989) were very useful in pro-viding a sense of the regional relationship of the various formations. They also provided information on regional faulting, especially in the Tioga County area. Sever-al pairs of normal faults form a series of downdrop structures across central and extreme northern Tioga County. These faults are apparently pre-Devonian in age, and seem to have effected the amount of deposition in the respective down-drop block. The subsurface mapping of Northern Tioga County provided in Pyron (1997) pro-vides some subsurface clues as to the location of additional exploratory targets. Using these evaluation parameters, several interesting interpretations can be made based upon the subsurface data. - 1. Without exception, the structural maps created on various datum suggested that structures formed within the individual downdrop blocks. These individual structure (which might be referred to as closures) seen to trend north-south, although this may be a result of the distribution of data points, or a bias in the method of contouring. A significant structure (identified as Target B) is located in the northwestern quadrant of Tioga County. This feature is located along the trend of the Van Etten Anticline, a surface feature identified by Williams, Tarr, and Kindle (1909). - 2. The isopach maps that were prepared also suggested the presence of potential exploration targets in the downdrop block north and west of the stagecoach field. The isopach maps showing thickness of the Oriskany Sandstone, and the thickness map of the Tully Limestone. In Target B, the Oriskany Sandstone has an estimated thickness of 20 feet, and this may be more suggestive of the location of the ultimate trap. - 3. The paleogeomorphic map based on the same mapping interval used in analyzing the Stagecoach Field suggests that significant interval thinning typical of a paleogeomorphic high may be present in an area near West Candor, NY. It appears that this high may be affected by a fault in the Upper Devonian. However, there are only three data points in the map area. There is a reported show of natural gas in the Oriskany Sand in the NYS Natural Gas W.E. Stevens well. This well offsets what should be the paleogeomorphic high. Using the Stagecoach Field experience as a model, thinning of the mapped interval is an effective indicator hydrocarbon accumulation and production. Based upon the integration of the subsurface mapping, production data, and other subsurface information, it is apparent that several of the subsurface maps that were created can be directly applied to hydrocarbon exploration in Tioga County. Using the criteria established above, it appears that the paleogeomorphic map is an indicator of where economic amounts of hydrocarbons may be located. By analog to the Stagecoach Field, those wells which fall within a mapped thinning of the paleogeomorphic interval have a better than average change of holding hydrocarbons. #### 4.2.2 Previous exploration data In Tioga County, outside of the wells located in on trend with the Stagecoach Field, there are a total of eleven identified exploratory wells. Within the Northern Tioga County Study Area there are four wells Information for two of these wells. One of these wells, the Sawyer well, which was drilled in 1888, had no available information in any of the data repositories
checked. The following wells had complete information (i.e., well logs completion cards and associated information) and formed the basis for this evaluation: - New York Natural Gas W.E. Stevens #1 (drilled in 1947), - Fault Line Oil Van Riper Unit #1 and the Spencer et. al. Unit #1 (drilled in 1990) None of these wells is drilled to a horizon deeper than the Helderberg. 4.2.3 Integration of soil gas data with previous studies #### 4.2.3.1 Remote sensing The remote sensing analysis (Figure 16.0) is extracted from a larger study of the Central New York area. The extracted interpretation has been annotated by installing a layer of data that shows the location of wells in the Stagecoach Field. The interpretation of this image revealed a variety of well established NE-SW and NW-SE trending lineaments. In addition, during the interpretation, a bias to ignore prominent E-W features was imposed because this direction tracts the processing graining of the image. Several N-S lineaments reflect local fault structures, or internal fracturing of the basement and overlying rocks associated with compressional and extensional tectonics. There are also several E-W lineaments that follow the trend the Van Etten Anticline, a surface feature. Given the frequency of the lineaments, and the over-lapping nature of the patterns, it is logical to conclude that fracture porosity will enhance the productivity of reservoirs when they are encountered. The observed tonal anomalies are very distinct, and have a bright character, which implies that the reservoir rocks are competently sealed, and that they host non-depleted accumulations of hydrocarbons. Review of the location of the tonal anomalies shows that they are isolated from other tonal anomaly swarms on the master map. These reservoirs might be gas driven, and might host significant associated reserves of natural gas. Significantly, The existing production in the area does not account for the intensity or density of the tonal anomalies. This suggests that additional, non-developed reservoirs may exist below those currently developed. #### 4.2.3.2 Paleogeomorphic mapping In the model area, the paleogeomorphic map (Figure 17.0) identifies an area in which there is the potential for paleogeomorphic thinning in the same map interval used to model the Stagecoach Field. The theory of the development of this map is discussed in Pyron (1997 b). Optimum reservoirs may occur in and immediately proximate to the areas of thinning. Given that there is limited subsurface control information, the coincidence of the paleogeomorphic map, the Remote Sensing data, and the geochemical gas probability map suggests that some potential for the area exists. Because the NYS Stevens well had a reported show, an additional test well should be encouraged for the area. Additional discussion of the paleogeomorphic mapping technique can be obtained by contacting Pyron Consulting. ## 4.3 Discussion of a new exploration model This study was designed to develop an exploration model that could provide a low cost, accurate tool (or combination of tools) that independent exploration and development companies could use in the Appalachian Basin. The exploration model we have developed for this basin is called the Integrated Exploration Technology (IET). IET incorporates several proprietary, but readily available, tools, including surface geochemical data (light and heavy hydrocarbon analysis of soils and/or free soil gas, as appropriate to the target), remote sensing, paleogeomorphic mapping, gravity and other synoptic data as available, and an electronic assimilation of geologic and historical production information. Each of these data sources is developed as a layer of information, which can then be added to other layers to form an information product. Surface geochemical data provides potentially three key pieces of information about a site or region. First, it provides broad-based evidence of petroleum hydrocarbon presence and variations in concentration. Second, using both generalized and site specific compositional data, it can yield valuable prospect specific information to target detailed investigations and drilling programs. Most of the time, it is possible to specify if the study area appears to have accumulations of gas or oil or both. Finally, under the proper conditions, it can suggest some structural character in areas of high fracturing and faulting. Knowledge of the presence and the types of hydrocarbons in an area provided a powerful basis for further investigation and exploitation. The remote sensing layer includes lineament and fracture trace analysis. It also includes tonal anomaly and vegetative stress analysis of LANDSAT MSS and TM or SPOT data. This information is integrated with a base map having well locations, field boundaries, topographic and geographic, culture, and similar data. It provides a basis for highlighting, on a regional basis, targets for exploration, including potential drilling locations. It can also provide strategic evaluations on the favorability of an area for hosting reserves. The paleogeomorphic layer is a derivative subsurface mapping method that uses sequence stratigraphy to identify regional mapping intervals that can be related to economic accumulations of hydrocarbons. In addition, the precision of the methodology allows evaluation of new drilling locations by determining those areas with the best potential for hosting economic reserves, and those locations that could maximize the return on investment. The final layers of information include electronically accessed geological information, including core data, local surface geology, mapped structural features, petrophysical analysis, shows of oil and gas, etc. These data can be managed either in spreadsheet, CA, or multiple graphical layers. The layer provides a basis for increasing the knowledge about a select area to aid decision-makers in making investment decisions. When these elements are integrated, a solid indicator of the best wells in the Stagecoach Field are located in favorable positions relative to the paleogeomorphic map, the gas probability from soils map, and the regional LANDSAT lineament and tonal anomaly maps. A discussion of the integration of each element merits some additional discussion The first map presented is the integration of the remote sensing data with the paleogeomorphic map (Figure 18.0). The paleogeomorphic thin is located within an area in which the tonal anomalies are overlapped. In addition, the frequency of cross lineaments suggests that the reservoirs may have enhanced fracture porosity. The second map provides an integration of the remote sensing with the soil gas data (Figure 19.0). The areas that have the best potential, as based upon the geochemical data, coincide with the overlapping tonal anomalies. A third map (Figure 20.0) shows the paleogeomorphic map data overlying the geochemical gas probability data. Again there is a coincidence between the most favorable areas, as based upon the geochemical data, and the areas adjacent to or within the paleogeomorphic thin. Interesting, the best wells in the field are located in the areas in which the favorable positions on both the paleogeomorphic map and the geochemical data overlap. When the data are integrated, the paleogeomorphic thins, overlie both the best areas as defined by the gas probability study and the areas in which tonal anomaly swarms are present (Figure 21.0). There is a coincidence of the integrated favorable areas and the most productive wells in the field. Further, our data suggest additional infill or developmental locations still exist within the field. Further, with the integration of select geophysical data, a complete exploration package could easily be assembled for a reasonable fee. Given that exploration programs must meet imposed budgetary constraints, the bulk of this study could have been completed for a relatively low fee which would not impact either out of pocket costs or the promotional fees associated with prospect development. DIRECT GEOCHEMICAL 20 #### 5.0 References Cited Brett, Carlton E., 1986, Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) in New York State, Part I, New York State Museum, Bulletin #457 Brett, Carlton E., and Landing, Ed, 1991, Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) in New York State, Part 2, New York State Museum, Bulletin #469 DeWitt, Wallace, Jr. and Colton, George W., 1959, Revised Correlations of Lower Upper Devonian Rocks in Western and Central New York, AAPG, Vol. 43,no. 12, pp 2810-2828 Finn, Fenton H., 1949, Geology and Occurrence of Natural Gas in the Oriskany Sandstone in Pennsylvania and New York, AAPG, Vol. 33, No. 3, pp 305-335 Fontana, John, 1997, Exploration Applications Using Fluorescence Spectra of Crude Oil, presented at Society of Independent Professional Earth Scientists. Fontana, John, and Robert D. Edmondson, 1994, Unbiased Anomaly Threshold Determination of Near Surface Hydrocarbon Data by Modeling Frequency Distributions with Probability Graphs, presented at 1994 AAPG Hedberg Conference - Near Surface Expression of Hydrocarbon Migration. Fontana, John, and Gerry Calhoun, 1994, Oil to Soil Fluorescence - A Vital Link, presented at 1994 AAPG Hedberg Conference - Near Surface Expression of Hydrocarbon Migration Frey, M. Gordon, 1973, Influence of Salina Salt on Structure in the New York-Pennsylvania Part of the Appalachian Plateau, AAPG, Vol. 57, no.6, pp 1027-1037 Garrett, S.G., 1931, Oriskany Gas Fields of Pennsylvania and New York, AAPG, Vol. 15, no. 7, pp 837-839 Hartnagel, C.A. and Russell, W.L., 1925, The Oil Fields of New York State, AAPG, Vol. 9, no. 4, pp 798-803 Heck, E. T., 1948, New York Subsurface Geology, AAPG, Vol. 32, no. 8, pp 1449-1456 Heckel, Philip H., 1966, Stratigraphy, Petrography, and Depositional Environment of the Tully Limestone
(Devonian) in New York State and Adjacent Region, Dissertation, Rice University, Houston, TX 448 pp. Pyron, Arthur J.,1986, Paleogeomorphic Mapping: Aid to Identifying Stratigraphic Traps in the Delaware Basin and the Northwestern Shelf of New Mexico, paper presented to the 1986 SWS-AAPG meeting, Ruidoso, New Mexico "", 1988, Lowering the Cost of Exploration for Independents: How Remotely Sensed Data Aids in the Search for Oil and Gas, ERIM, International Conference, Houston, Texas, May 15,1988 - "" ", 1996, Integrated Exploration Technology (IET) as a Cost Saving Tool for Energy Companies: The Shipp Field, New Mexico Example, A talk presented to the SIPES 1996 National Convention, Dallas, TX - "" ", 1997 b, Application of Paleogeomorphic Mapping Technique to the Subsurface Evaluation of the Appalachian Basin of New York; Three Study Areas in South-central and Southeastern New York, IOGA-NY Summer Meeting, July, 1997 - "" ", 1997 f, Paleogeomorphic Mapping Applied to Stagecoach Field, NY, Oil and Gas Journal, Volume, 95, No.51, pp. 106-110, Dec. 22, 1997 Rickard, Lawrence V., 1969, Stratigraphy of the Upper Silurian Salina Group, New York, Pennsylvania, Ohio, and Ontario, New York State Museum and Science Service, Map and Chart Series #12, 57 pp plus 14 plates Rickard, Lawrence V., 1973, Stratigraphy and Structure of the Subsurface Cambrian and Ordovician Carbonates of New York, New York State Museum and Science Service, Map and Chart Series #18, 26 pp plus 19 plates Rickard, Lawrence V., 1989, Stratigraphy of the Subsurface Lower and Middle Devonian of New York Carbonates of New York, Pennsylvania, Ohio, and Ontario, New York State Museum and Science Service, Map and Chart Series #39, 59 pp plus 40 plates Torrey, Paul D., 1931, Natural Gas from the Oriskany Formation in Central New York and Northern Pennsylvania, AAPG, Vol. 15, no. 6, pp 671-689 Viellenave, J.H. and J.R. Wensley, 1992, Enhancement of Concession Offerings and Focusing Exploration Activities Using PETREX Surface Geochemical Techniques, presented at the Institute of Americas Conference Viellenave, J.H., R.W. Potter II, P.A. Harrington, and A.H. Silliman, 1994 The Significance of Geochemical Anomalies in Hydrocarbon Exploration, in Hydrocarbon Migration and its Surface Expresssion, edited by D. Schumacher and M. Abrams, AAPG Memoir 66, pp 431-439. Williams, H.S., Tarr, R.S., and Kindle, E.M., 1909, Geologic Atlas of the United States, Watkins Glen – Catatonk, Folio, United States Geological Survey Folio 169, 245p Wright, Nancy A, 1973, Subsurface Tully Limestone, New York and Northern Pennsylvania, New York State Museum and Science Service, Map and Chart Series #14, 15 pp plus 4 plates Appendix 1 Tables, Figures ## Field Notes Collected During Stagecoach Field Sampling Event | | | CDC 1 | | , | 6-11 | C - 11 | Install/ | D | | |-----------|------------|--------------|-----------|---------|---------|--------|--------------------|------------------|--| | Sample ID | * -111 | GPS Location | | Passive | Soil | Soil | Collection
Date | Recovery
Date | Comments | | 1. | Latitude | Longitude | Elevation | Sampler | Sampler | pH | Date | Date | | | 9801 | 41* 59. 92 | 76° 20.90 | | x | x | 3.5 | 5/12/98 | 6/16/98 | River Gravels, well mixed | | 9802 | 42*00.20 | 76*21.09 | | x | × | 4.3 | 5/12/98 | 6/16/98 | Silty clay with pebbles | | 9803 | 42*00.20 | 76*21.56 | | x | x | 4.9 | 5/12/98 | Lost | | | 9804 | 41*59.92 | 76°20.56 | | x | х | 5.2 | 5/12/98 | 6/16/98 | | | 9805 | 41'59.97 | 76*20.09 | | x | x | 5.4 | 5/12/98 | 1.ost | River Gravels well mixed with sift | | 9806 | 42'01.34 | 76*19.60 | | × | × | 4.8 | 5/12/98 | 6/16/98 | Yellow-brown clays with rock | | 9807 | 42*00.76 | 76°19.77 | | × | × | 5.3 | 5/12/98 | Lost | | | 9808 | 42'01.31 | 76'19.74 | | · x | × | 5.4 | 5/12/98 | 6/16/98 | Red Brown Silty clay | | 9809 | 42*00.63 | 76*21.82 | | x | × | 5.2 | 5/12/98 | 1.ost | | | 9810 | 42*00.88 | 76*120.75 | | × | x | 5.2 | 5/12/98 | 6/16/98 | Black organic soil intermixed with clay and ro | | 9811 | 42'00.22 | 76*19.39 | | x | | 5.6 | 5/12/98 | 6/16/98 | Silty clay and rock | | 9812 | 41*59.60 | 76'19.34 | | x | × | 5.8 | 5/12/98 | Lost | Buff-brown clays with rock | | 9813 | 42'00.06 | 76'18.99 | | x | x | 5.6 | 5/12/98 | 6/16/98 | Clay-gravel mixture | | 9814 | 42*00, 02 | 76*18.80 | | × | х | 5.6 | 5/12/98 | 6/16/98 | • • | | 9815 | 42*00.01 | 76*18.68 | | x | | 5.2 | 5/12/98 | 1.ost | | | 9816 | 42*00.21 | 76'18.75 | | × | x | 5.1 | 5/12/98 | 6/16/98 | Buff-brown clays with rock | | 9817 | 42*00.21 | 76*18.75 | | × | × | 5.0 | 5/12/98 | 6/16/98 | Clay-gravel mixture | | 9818 | 42*00.71 | 76'18.25 | | x | x | 5.2 | 5/12/98 | 6/16/98 | Clay-gravel mixture | | 9819 | 42'01.05 | 76'18.36 | | х | × | 5.3 | 5/12/98 | 6/16/98 | Clay-gravel mixture | | 9820 | 42'00.49 | 76*19.60 | | × | × | 5.3 | 5/12/98 | 6/16/98 | Silty (Tay | | 9821 | 42*00.68 | 76*19.04 | | x | × | 5.7 | 5/12/98 | 6/16/98 | | | 9822 | 42'01.17 | 76*17.45 | | × | × | 5.4 | 5/12/98 | Lost | Heavy Black Brown Clay | | 9823 | 42'01.34 | 76*19.60 | | х | x | 5.6 | 5/12/98 | 6/16/98 | Brown Clay and silt | | 9824 | 42'00.57 | 76°17.86 | | х | | 6.0 | 5/12/98 | 6/16/98 | Heavy Brown Clay | | 9825 | 42'00.43 | 76'17.07 | | х | x | 6.1 | 5/12/98 | 6/16/98 | | | 9826 | 41*59.29 | 76'16.24 | | х | х | 5.9 | 5/12/98 | Lost | | | 9827 | 42'00.43 | 76*17.00 | | × | х | 5.7 | 5/12/98 | 6/16/98 | Heavy Brown Clay and rock | | 9828 | 42'00.78 | 76*16.28 | | × | | 5.5 | 5/12/98 | 6/16/98 | | | 9829 | 42'00.51 | 76*16.30 | | x | x | 6.1 | 5/12/98 | 6/16/98 | | | 9830 | 42'00.45 | 76°15.43 | | × | х | 5.8 | 5/12/98 | 6/16/98 | • • | Sampler 9811, passive sampler only, at Nichols-Mead well head Sampler 9815, passive sampler only, at Latcher well head Sampler 9824, passive sampler only, at Cooke well head Sampler 9828, passive sampler only, at I, Mead #1 well head ## Field Notes Collected During Stagecoach Field Sampling Event | Sample ID | GPS Location | | | Passive | Soil | Soil | Install/
Collection | Recovery | Comments | |-----------|--------------|-----------|---|---------|------|------|------------------------|------------|----------------------------------| | | Latitude | Longitude | | Sampler | | рН | Date | Date | | | 9831 | 42° 02.39 | 76° 14.16 | | х | х | 5.2 | 05/13/1998 | 06/16/1998 | Buff-brown clays with rock | | 9832 | 42°01.03 | 76°16.14 | | × | х | 5.7 | 05/13/1998 | 06/16/1998 | | | 9833 | 42°01.63 | 76°16.34 | | x | | 5.4 | 05/13/1998 | Lost | Buff-brown silty clays with rock | | 9834 | 42°01.37 | 76°16.30 | | X | x | 5.8 | 05/13/1998 | 06/16/1998 | | | 9835 | 42°01.35 | 76°17.09 | | х | х | 5.6 | 05/13/1998 | 06/16/1998 | • | | 9836 | 42°01.75 | 76°17. 09 | | x | x | 5.4 | 05/13/1998 | 06/16/1998 | | | 9837 | 42°02.14 | 76°19.77 | - | x | х | 5.8 | 05/13/1998 | 06/16/1998 | | | 9838 | 42°02.00 | 76°16.22 | | x | х | 5.6 | 05/13/1998 | 06/16/1998 | | | 9839 | 42°01.54 | 76°17.71 | | X | х | 8.7 | 05/13/1998 | 06/16/1998 | | | 9840 | 42°01.60 | 76°15.60 | | X | | 6.2 | 05/13/1998 | 06/16/1998 | | | 9841 | 42°01.65 | 76°15.70 | | X | х | 5.5 | 05/13/1998 | 06/16/1998 | | | 9842 | 42°01.26 | 76°15.03 | | X | x | 5.9 | 05/13/1998 | 06/16/1998 | | | 9843 | 42°01.45 | 76°14.08 | | X | Х | 4.2 | 05/13/1998 | 06/16/1998 | | | 9844 | 42°00.99 | 76°14.59 | | х | X | 5.1 | 05/13/1998 | 06/16/1998 | • | | 9845 | 42°00.99 | 76°15.13 | | Х | Х | 4.9 | 05/13/1998 | 06/16/1998 | • | | 9846 | 42°00.49 | 76°15.28 | | X | х | 4.7 | 05/13/1998 | 06/16/1998 | | | 9847 | 42°01.00 | 76°14.84 | | х | x | 4.6 | 05/13/1998 | 06/16/1998 | | | 9848 | 42°02.14 | 76°14.37 | | х | х | 4.7 | 05/13/1998 | 06/16/1998 | | | 9849 | 42°02.59 | 76°14.70 | | X | х | 4.8 | 05/13/1998 | 06/16/1998 | | | 9850 | 42°02.43 | 76°14.78 | | X | X | 4.7 | 05/13/1998 | Lost | | | 9851 | 42°02.47 | 76°14.78 | | X | x | 4.6 | 05/13/1998 | 06/16/1998 | * | | 9852 | 42°02.11 | 76°15.38 | | X | х | 4.7 | 05/13/1998 | 06/16/1998 | | | 9853 | 42°01.63 | 76°13.71 | | х | х | 4.8 | 05/13/1998 | 06/16/1998 | | | 9854 | 42°00.98 | 76°14.00 | | X | X | 4.7 | 05/13/1998 | 06/16/1998 | • | | 9855 | 42°00.69 | 76°14.11 | | x | х | 4.7 | 05/13/1998 | Lost | | | 9856 | 42°01.81 | 76°13.15 | | X | х | 4.8 | 05/13/1998 | 06/16/1998 | • | | 9857 | 42°02.03 | 76°13.46 | | × | | 4.7 | 05/13/1998 | Lost | • | | 9858 | 42°01.93 | 76°13.13 | | X | х | 4.6 | 05/13/1998 | 06/17/1998 | | | 9859 | 42°02.18 | 76°13.02 | | X | | 4.6 | 05/13/1998 | 06/17/1998 | | | 9860 | 42°01.49 | 76°12.89 | | × | х | 4.7 | 05/13/1998 | Lost | N M | Comments: Re-calibrated GPS unit. took measurement at location 30 Long 42° 00.22. Lat 76° 16. 32 Sampler 9833, passive sampler only, at Owen #1 well head Sampler 9840 , passive sampler only, at Barnhardt well head Sampler 9857 , passive sampler only, at Racht well head Sampler 9859 , passive sampler only, at Fyock well head | Sample ID | | GPS Location | Passive | Soil | Soil | Install/
Collection | Recovery | Comments | | | |-----------|-----------|--------------|-----------|---------|---------|------------------------|----------|----------|-----------------------------------|--| | | Latitude | Longitude | Elevation | Sampler | Sampler | ler pH | Date | Date | | | | 9861 | 42° 01.49 | 76° 12.184 | | х | × | 4.6 | 5/13/98 | 6/17/98 | Buff-brown clays with no rock | | | 9862 | 42°00.,87 | 76°13.45 | | X | x | 5.7 | 5/13/98 | 6/17/98 | Buff-brown silty clays with rock | | | 9863 | 42°01.29 | 76°17.85 | | х | x | 5.4 | 5/13/98 | Lost | 4 10 | | | 9864 | 42°00.77 | 76°11.71 | | х | x | 5.8 | 5/13/98 | Lost | • | | | 9865 | 42°01.25 | 76°11.99 | | х | x | 5.6 | 5/13/98 | 1.ost | • | | | 9866 | 42°01.77 | 76*12.65 | | x | х | NA | 5/14/98 | 6/17/98 | Brown silty days with rock | | | 9867 | 42 02.58 | 76°12.17 | | x | x | NA | 5/14/98 | 1.ost | | | | 9868 | 42°01.33 | 76'11.70 | | X | x | NA | 5/14/98 | l.ost | • • | | | 9869 | 42°02.63 | 76°11.78 | | × | х | NA |
5/14/98 | 6/17/98 | | | | 9870 | 42 02.64 | 76°10.14 | | x | х | NA | 5/14/98 | 6/17/98 | | | | 9871 | 42°03.11 | 76°10.62 | | x | | NA | 5/14/98 | 6/17/98 | | | | 9872 | 42°02.81 | 76°10.69 | | x | × | NA | 5/14/98 | 6/17/98 | | | | 9873 | 42'02.61 | 76°11.37 | | x | × | . NA | 5/14/98 | i.ost | | | | 9874 | 42.02.44 | 76°11.74 | | х | х | NA | 5/14/98 | 6/16/98 | | | | 9875 | 42°01.87 | 76"12.18 | | x | × | NA | 5/14/98 | 6/16/98 | Heavy red brown clay, silt | | | 9876 | 42'02.47 | 76°13.51 | | x | x | NA | 5/14/98 | 6/16/98 | Heavy red brown clay, silt, rocks | | | 9877 | 42°02.77 | 76°13.77 | | x | × | NA | 5/14/98 | 6/16/98 | . 11 | | | 9878 | 42 03.40 | 76°15.85 | | × | × | NA | 5/14/98 | 6/16/98 | • | | | 9879 | 42'03.31 | 76°13.730 | | × | × | NA | 5/14/98 | 6/16/98 | • " | | | 9880 | 42°03.38 | 76°12.52 | | × | × | NA | 5/14/98 | Lost | • " | | | 9881 | 42 03.46 | 76.12.06 | | × | × | NA | 5/14/98 | 6/16/98 | • " | | | 9882 | 42 03.41 | 76 11.66 | | × | x | NA | 5/14/98 | 6/16/98 | | | | 9883 | 42 03.48 | 76 11.00 | | × | × | NA | 5/14/98 | 6/16/98 | Brown Silt and gravel | | | 9884 | | | | × | × | NA | 5/14/98 | 1.ost | • " | | | 9885 | 42°03.16 | 76°10.00 | | × | × | NA | 5/14/98 | l.ost | • 1, 1 | | | 7000 | 1200.0 | 7.0 10.00 | | | | | 1 | Comments: pH meter broken 5/14 Sampler 9871, passive sampler only, at Jones well head GPS location accidentally missed at Location 9885 ## Field Notes Collected During North Tioga Co. Sampling Event | Sample ID | | GPS Location | | Passive | Soil | Soil | Install/
Collection | Pagayary | Commonto | |-----------|-----------|--------------|-----------|---------|---------|------|------------------------|------------------|-------------------------------| | Sample 1D | Latitude | Longitude | Elevation | Sampler | Sampler | рН | Date | Recovery
Date | Comments | | 0598-01 | 42° 12.19 | 76° 31.84 | NA | X | Х | NA | 5/14/98 | Lost | Buff-brown clays with no rock | | 0598-02 | 42 12.31 | 76°31.33 | NA | Х | X | NA | 5/14/98 | Lost | Organic soil no rock | | 0598-03 | 42^11.84 | 76°32.09 | NA | Х | X | NA | 5/14/98 | 6/18/98 | Brown silty clays with rock | | 0598-04 | 42°11.88 | 76°31.32 | NA | X | X | NA | 5/14/98 | Lost | 7 (1 | | 0598-05 | 42^11.75 | 76° 31.10 | NA | X | X | NA | 5/14/98 | Lost | H If | | 0598-06 | 42°11.04 | 76° 31. 17 | NA | X | X | NA | 5/14/98 | 6/18/98 | R 11 | | 0598-07 | 42 11.18 | 76° 30.26 | NA | X | X | NA | 5/14/98 | 6/18/98 | Brown silty clays with rock | | 0598-08 | 42°11.30 | 76°29.58 | NA | Х | X | NA | 5/14/98 | 6/18/98 | * " | | 0598-09 | 42^11.38 | 76°29.43 | NA | Х | X | . NA | 5/14/98 | Lost | н | | 0598-10 | 42°11.78 | 76°29.72 | NA | X | X | NA | 5/14/98 | 6/18/98 | , , | | 0598-11 | 42°12.25 | 76°29.67 | NA | × | X | NA | 5/14/98 | Lost | Organic soil no rock | | 0598-12 | 42°11.84 | 76°30.19 | NA | X | X | NA | 5/14/98 | Lost | H II | | 0598-13 | 42"12.27 | 76°30.69 | NA | X | X | NA | 5/14/98 | Lost | Brown silty clays with rock | | 0598-14 | 42^12.15 | 76°30.13 | NA | × | X | NA | 5/14/98 | Lost | H 11 | | 0598-15 | 42"12.21 | 76°29.78 | NA | X | × | NA | 5/14/98 | Lost | Organic sandy soil no rock | | 0598-16 | 42°14.30 | 76° 28.18 | NA | X | × | NA | 5/14/98 | 6/18/98 | Brown silty clays with rock | | 0598-17 | 42^13.53 | 76° 28.18 | NA | X | × | NA | 5/14/98 | Lost | W 16 | | 0598-18 | 42°13.13 | 76°28.73 | NA | X | X | NA | 5/14/98 | Lost | Organic sandy soil no rock | | 0598-19 | 42"13.41 | 76°28.86 | NA | X | X | NA | 5/14/98 | 6/18/98 | Brown silty clays with rock | | 0598-20 | 42°12.64 | 76°28.90 | NA | × | X | NA | 5/15/98 | Lost | . " | | 0598-21 | 42'12.19 | 76°28.42 | NA | X | X | NA | 5/15/98 | Lost | . # 11 | | 0598-22 | 42'11.89 | 76°28.36 | NA | X | × | NA | 5/15/98 | 6/18/98 | | | 0598-23 | 42 11.31 | 76°28.37 | NA | X | X. | NA | 5/15/98 | Lost | | | 0598-24 | 42 10.72 | 76°27.84 | NA | X | X | NA | 5/15/98 | Lost | ** | | 0598-25 | 42'11.29 | 76°27.819 | NA | х | X | NA | 5/15/98 | 6/18/98 | | | 0598-26 | 42 11.97 | 76°27.07 | NA. | X | × | NA | 5/15/98 | Lost | * ** | | 0598-27 | 42 12.43 | 76°27.13 | NA | X | X | NA | 5/15/98 | Lost | | | 0598-28 | 42 12.59 | 76°27.11 | NA | × | × | NA | 5/15/98 | 6/18/98 | Н | | 0598-29 | 42 12.56 | 76°27.29 | NA | × | X | NA | 5/15/98 | Lost | ** | | 0598-30 | 42 12.32 | 76°27.94 | NA | X | × | NA | 5/15/98 | 6/18/98 | Organic sandy soil no rock | Comments: pH meter broken 5/14 ## Field Notes Collected During North Tioga Co. Sampling Event | Cample ID | | GPS Location | | Passive | Soil | Soil | Install/
Collection | Recovery | Comments | |-----------|-----------|--------------|-----------|---------|---------|------|------------------------|----------|-------------------------------| | Sample ID | Latitude | Longitude | Elevation | Sampler | Sampler | pН | Date | Date | Continents | | 0598-01 | 42" 12.19 | 76° 31.84 | NA | X | Х | NA | 5/14/98 | Lost | Buff-brown clays with no rock | | 0598-02 | 42 12.31 | 76°31.33 | NA | × | x | NA | 5/14/98 | Lost | Organic soil no rock | | 0598-03 | 42`11.84 | 76°32.09 | NA | X | X | NA | 5/14/98 | 6/18/98 | Brown silty clays with rock | | 0598-04 | 42°11.88 | 76°31.32 | NA | X | x | NA | 5/14/98 | Lost | * " | | 0598-05 | 42^11.75 | 76° 31.10 | NA | X | × | NA | 5/14/98 | Lost | # H | | 0598-06 | 42°11.04 | 76° 31. 17 | NA | X | × | NA | 5/14/98 | 6/18/98 | # 1 | | 0598-07 | 42 11.18 | 76° 30.26 | NA | X | X | NA | 5/14/98 | 6/18/98 | Brown silty clays with rock | | 0598-08 | 42°11.30 | 76°29.58 | NA | X | × | NA | 5/14/98 | 6/18/98 | * ** | | 0598-09 | 42°11.38 | 76°29.43 | NA | X | x | . NA | 5/14/98 | Lost | M es | | 0598-10 | 42°11.78 | 76°29.72 | NA | × | × | NA | 5/14/98 | 6/18/98 | H 11 | | 0598-11 | 42°12.25 | 76°29.67 | NA | X | x | NA | 5/14/98 | Lost | Organic soil no rock | | 0598-12 | 42°11.84 | 76°30.19 | NA | X | × | NA | 5/14/98 | Lost | 19 89 | | 0598-13 | 42°12.27 | 76°30.69 | NA | X | × | NA | 5/14/98 | Lost | Brown silty clays with rock | | 0598-14 | 42^12.15 | 76°30.13 | NA | × | × | NA | 5/14/98 | Lost | H 11 | | 0598-15 | 42 12.21 | 76°29.78 | NA | X | x | NA | 5/14/98 | Lost | Organic sandy soil no rock | | 0598-16 | 42°14.30 | 76° 28.18 | NA | X | × | NA | 5/14/98 | 6/18/98 | Brown silty clays with rock | | 0598-17 | 42^13.53 | 76° 28.18 | NA | X | Х | NA | 5/14/98 | Lost | 1 11 | | 0598-18 | 42°13.13 | 76°28.73 | NA | X | X | NA | 5/14/98 | Lost | Organic sandy soil no rock | | 0598-19 | 42 13.41 | 76°28.86 | NA | Х | Х | NA | 5/14/98 | 6/18/98 | Brown silty clays with rock | | 0598-20 | 42°12.64 | 76°28.90 | NA | X | X | NA | 5/15/98 | Lost | | | 0598-21 | 42'12.19 | 76°28.42 | NA | X | X | NA | 5/15/98 | Lost | | | 0598-22 | 42'11.89 | 76°28.36 | NA | X | X | NA | 5/15/98 | 6/18/98 | . # 11 | | 0598-23 | 42 11.31 | 76°28.37 | NA | X | X, | NA | 5/15/98 | Lost | | | 0598-24 | 42 10.72 | 76°27.84 | NA | X | X | NA | 5/15/98 | Lost | * · | | 0598-25 | 42'11.29 | 76°27.819 | NA | Х | Х | NA | 5/15/98 | 6/18/98 | | | 0598-26 | 42 11.97 | 76°27.07 | NA | X | X | NA | 5/15/98 | Lost | n 11 | | 0598-27 | 42 12.43 | 76°27.13 | NA | Х | X | NA | 5/15/98 | Lost | | | 0598-28 | 42 12.59 | 76°27.11 | NA | X | × | NA | 5/15/98 | 6/18/98 | | | 0598-29 | 42 12.56 | 76°27.29 | NA | Х | X | NA | 5/15/98 | Lost | | | 0598-30 | 42 12.32 | 76°27.94 | NA | × | X | NA | 5/15/98 | 6/18/98 | Organic sandy soil no rock | Comments: pH meter broken 5/14 ## Field Notes Collected During North Tioga Co. Sampling Event | Sample ID | | GPS Location | | Passive S | Soil | Soil | Install/
Collection | Recovery | Comments | |-----------|----------|--------------|-----------|-----------|--------------|----------|------------------------|----------|-----------------------------| | • | Latitude | Longitude | Elevation | Sampler | Sampler | pH | Date | Date | | | | | | | | | | | | | | 0598-31 | 42^12.68 | 76°27.85 | NA | X | X | NA | 5/15/98 | 6/18/98 | Brown silty clays with rock | | 0598-32 | 42 12.85 | 76°27.29 | NA | X | Х | NA | 5/15/98 | 6/18/98 | | | 0598-33 | 42°14.15 | 76°26.99 | NA | X | X | NA | 5/15/98 | Lost | H 19 | | 0598-34 | 42^13.83 | 76° 26.84 | NA | X | X | NA | 5/15/98 | 6/18/98 | | | 0598-35 | 42°13.11 | 76° 26. 58 | NA | X | X | NA | 5/15/98 | Lost | н и | | 0598-36 | 42 13.29 | 76° 30.26 | NA | X | X | NA | 5/15/98 | Lost | | | 0598-37 | 42°14.70 | 76°25.543 | NA | X | X | NA | 5/15/98 | 6/18/98 | н и | | 0598-38 | 42°14.21 | 76°25.86 | NA | × | Х | NA | 5/15/98 | Lost | N 11 | | 0598-39 | 42^13.25 | 76°25.87 | NA | X | X | NA | 5/15/98 | Lost | н 11 | | 0598-40 | 42^14.02 | 76°23.85 | NA | X | Х | NA | 5/15/98 | 6/18/98 | 11 | | 0598-41 | 42°13.78 | 76°24.34 | NA | Х | X | NA | 5/15/98 | 6/18/98 | | | 0598-42 | 42°13.71 | 76°24.59 | NA | X | X | NA | 5/15/98 | 6/18/98 | | | 0598-43 | 42°13.54 | 76°325.21 | NA | X | X | NA | 5/15/98 | Lost | H 11 | | 0598-44 | 42°12.70 | 76' 26.53 | NA | X | X | NA | 5/15/98 | 6/18/98 | | | 0598-45 | 42°12.82 | 76° 25.95 | NA | × | X | NA | 5/15/98 | Lost | Organic sandy soil no rock | | 0598-46 | 42°13.60 | 76° 25.47 | NA | X | X | NA | 5/15/98 | Lost | | | 0598-47 | 42°13.07 | 76°25.54 | NA | × | X | NA | 5/15/98 | 6/18/98 | | | 0598-48 | 42°13.25 | 76°24.38 | NA | × | X | NA | 5/15/98 | Lost | Brown silty clays with rock | | 0598-49 | 42 13.17 | 76°25.18 | NA | X | X | NA | 5/15/98 | Lost | | | 0598-50 | 42°13.14 | 76°25.10 | NA | X | X | NA | 5/15/98 | 6/18/98 | | | 0598-51 | 42`13.20 | 76°23.97 | NA | × | X | NA | 5/15/98 | Lost | | | 0598-52 | 42°13.14 | 76°23.90 | NA | X | X | NA | 5/15/98 | Lost | | | | | <u> </u> | | | | | | | | | | | | | | 1 | | | | | | | | | | l | | | <u> </u> | | | | ## Field Notes Collected During Stagecoach Field Sampling Event | Sample ID | e | PS Location | \n | Passive | Soil | Soil |
Install/
Collection | Recovery | Comments | |-----------|------------|-------------|-----------|---------|------|------|------------------------|------------|--| | Sample ID | Latitude | | Elevation | | | | Date | Date | | | 9801 | 41° 59. 92 | 76° 20.90 | | x | × | 3.5 | 05/12/1998 | 06/16/1998 | River Gravels. well mixed | | 9802 | 42°00.20 | 76°21.09 | 1 11 11 | x | х | 4.3 | 05/12/1998 | 06/16/1998 | Silty clay with pebbles | | 9803 | 42°00.20 | 76°21.56 | | X | х | 4.9 | 05/12/1998 | Lost | | | 9804 | 41°59.92 | 76°20.56 | | х | X | 5.2 | 05/12/1998 | 06/16/1998 | | | 9805 | 41°59.97 | 76°20.09 | | x | X | 5.4 | 05/12/1998 | Lost | River Gravels well mixed with silt | | 9806 | 42°01.34 | 76°19.60 | | x | X | 4.8 | 05/12/1998 | 06/16/1998 | Yellow-brown clays with rock | | 9807 | 42°00.76 | 76°19.77 | | х | x | 5.3 | 05/12/1998 | Lost | | | 9808 | 42°01.31 | 76°19.74 | | х | х | 5.4 | 05/12/1998 | 06/16/1998 | Red Brown Silty clay | | 9809 | 42°00.63 | 76°21.82 | : | х | х | 5.2 | 05/12/1998 | Lost | | | 9810 | 42°00.88 | 76°120.75 | | х | х | 5.2 | 05/12/1998 | 06/16/1998 | Black organic soil.intermixed with clay and re | | 9811 | 42°00.22 | 76°19.39 | | х | | 5.6 | 05/12/1998 | 06/16/1998 | Silty clay and rock | | 9812 | 41°59.60 | 76°19.34 | | х | х | 5.8 | 05/12/1998 | Lost | Buff-brown clays with rock | | 9813 | 42°00. 06 | 76°18.99 | | х | X | 5.6 | 05/12/1998 | 06/16/1998 | Clay-gravel mixture | | 9814 | 42°00. 02 | 76°18.80 | | х | × | 5.6 | 05/12/1998 | 06/16/1998 | я н | | 9815 | 42°00.01 | 76°18.68 | | Х | | 5.2 | 05/12/1998 | Lost | я и | | 9816 | 42°00.21 | 76°18.75 | | x | х | 5.1 | 05/12/1998 | 06/16/1998 | Buff-brown clays with rock | | 9817 | 42°00.21 | 76°18.75 | | х | х | 5.0 | 05/12/1998 | 06/16/1998 | Clay-gravel mixture | | 9818 | 42°00.71 | 76°18.25 | | X | X. | 5.2 | 05/12/1998 | 06/16/1998 | Clay-gravel mixture | | 9819 | 42°01.05 | 76°18.36 | | х | х | 5.3 | 05/12/1998 | 06/16/1998 | Clay-gravel mixture | | 9820 | 42°00.49 | 76°19.60 | | х | х | 5.3 | 05/12/1998 | 06/16/1998 | Silty Clay | | 9821 | 42°00.68 | 76°19.04 | | х | х | 5.7 | 05/12/1998 | 06/16/1998 | | | 9822 | 42°01.17 | 76°17.45 | | × | х | 5.4 | 05/12/1998 | Lost | Heavy Black Brown Clay | | 9823 | 42°01.34 | 76°19.60 | | × | × | 5.6 | 05/12/1998 | 06/16/1998 | Brown Clay and silt | | 9824 | 42°00.57 | 76°17.86 | | x | | 6.0 | 05/12/1998 | 06/16/1998 | Heavy Brown Clay | | 9825 | 42°00.43 | 76°17.07 | | × | × | 6.1 | 05/12/1998 | 06/16/1998 | | | 9826 | 41°59.29 | 76°16.24 | | × | Х | 5.9 | 05/12/1998 | Lost | | | 9827 | 42°00.43 | 76°17.00 | | × | X | 5.7 | 05/12/1998 | 06/16/1998 | Heavy Brown Clay and rock | | 9828 | 42°00.78 | 76°16.28 | | × | | 5.5 | 05/12/1998 | 06/16/1998 | | | 9829 | 42°00.51 | 76°16.30 | | × | X | 6.1 | 05/12/1998 | 06/16/1998 | | | 3043 | 42°00.45 | 76°15.43 | | × | X | 5.8 | 05/12/1998 | 06/16/1998 | | Comments: Sampler 9811 , passive sampler only, at Nichols-Mead well head Sampler 9815, passive sampler only, at Latcher well head Sampler 9824, passive sampler only, at Cooke well head Sampler 9828, passive sampler only, at I, Mead #1 well head ### Field Notes Collected During Stagecoach Field Sampling Event | Sample ID | (| SPS Location | n | Passive | Soil | Soil | Install/
Collection | Recovery | Comments | |-----------|-----------|--------------|-----------|---------|---------|------|------------------------|------------|----------------------------------| | | Latitude | Longitude | Elevation | Sampler | Sampler | pН | Date | Date | | | 9831 | 42° 02.39 | 76° 14.16 | | x | x | 5.2 | 05/13/1998 | 06/16/1998 | Buff-brown clays with rock | | 9832 | 42°01.03 | 76°16.14 | | x | х | 5.7 | 05/13/1998 | 06/16/1998 | н | | 9833 | 42°01.63 | 76°16.34 | | x | | 5.4 | 05/13/1998 | Lost | Buff-brown silty clays with rock | | 9834 | 42°01.37 | 76°16.30 | | X | х | 5.8 | 05/13/1998 | 06/16/1998 | | | 9835 | 42°01.35 | 76°17.09 | | X | х | 5.6 | 05/13/1998 | 06/16/1998 | и . | | 9836 | 42°01.75 | 76°17. 09 | | X | X | 5.4 | 05/13/1998 | 06/16/1998 | н | | 9837 | 42°02.14 | 76°19.77 | | X | х | 5.8 | 05/13/1998 | 06/16/1998 | * | | 9838 | 42°02.00 | 76°16.22 | | x | х | 5.6 | 05/13/1998 | 06/16/1998 | H | | 9839 | 42°01.54 | 76°17.71 | | X | х | 8.7 | 05/13/1998 | 06/16/1998 | 44 | | 9840 | 42°01.60 | 76°15.60 | | x | | 6.2 | 05/13/1998 | 06/16/1998 | | | 9841 | 42°01.65 | 76°15.70 | | X. | x | 5.5 | 05/13/1998 | 06/16/1998 | " | | 9842 | 42°01.26 | 76°15.03 | | Х | × | 5.9 | 05/13/1998 | 06/16/1998 | | | 9843 | 42°01.45 | 76°14.08 | | х | х | 4.2 | 05/13/1998 | 06/16/1998 | * | | 9844 | 42°00.99 | 76°14.59 | | x | х | 5.1 | 05/13/1998 | 06/16/1998 | • | | 9845 | 42°00.99 | 76°15.13 | | X | Χ. | 4.9 | 05/13/1998 | 06/16/1998 | | | 9846 | 42°00.49 | 76°15.28 | | X | X | 4.7 | 05/13/1998 | 06/16/1998 | * | | 9847 | 42°01.00 | 76°14.84 | | X | х | 4.6 | 05/13/1998 | 06/16/1998 | * | | 9848 | 42°02.14 | 76°14.37 | | X | х | 4.7 | 05/13/1998 | 06/16/1998 | | | 9849 | 42°02.59 | 76°14.70 | | x | х | 4.8 | 05/13/1998 | 06/16/1998 | | | 9850 | 42°02.43 | 76°14.78 | | Х | х | 4.7 | 05/13/1998 | Lost | | | 9851 | 42°02.47 | 76°14.78 | | X | x | 4.6 | 05/13/1998 | 06/16/1998 | | | 9852 | 42°02.11 | 76°15.38 | | X | х | 4.7 | 05/13/1998 | 06/16/1998 | | | 9853 | 42°01.63 | 76°13.71 | | Х | х | 4.8 | 05/13/1998 | 06/16/1998 | * | | 9854 | 42°00.98 | 76°14.00 | | X | х | 4.7 | 05/13/1998 | 06/16/1998 | • | | 9855 | 42°00.69 | 76°14.11 | | Х | Х | 4.7 | 05/13/1998 | Lost | | | 9856 | 42°01.81 | 76°13.15 | | × | х | 4.8 | 05/13/1998 | 06/16/1998 | | | 9857 | 42°02.03 | 76°13.46 | | X | | 4.7 | 05/13/1998 | Lost | • | | 9858 | 42°01.93 | 76°13.13 | | х | х | 4.6 | 05/13/1998 | 06/17/1998 | | | 9859 | 42°02.18 | 76°13.02 | | х | | 4.6 | 05/13/1998 | 06/17/1998 | | | 9860 | 42°01.49 | 76°12.89 | | x | x | 4.7 | 05/13/1998 | Lost | * * | | | | | | | | | | | | Comments: Re-calibrated GPS unit. took measurement at location 30 Long 42° 00.22. Lat 76° 16. 32 Sampler 9833, passive sampler only, at Owen #1 well head Sampler 9840, passive sampler only, at Barnhardt well head Sampler 9857, passive sampler only, at Racht well head Sampler 9859, passive sampler only, at Fyock well head ## Field Notes Collected During Stagecoach Field Sampling Event | Sample ID | | SPS Locatio | | Passive | Soil | Soil | Install/
Collection | Recovery | Comments | |-----------|-----------|--------------|-----------|---------|--|---------|------------------------|------------|-----------------------------------| | | Latitude | Longitude | Elevation | Sampler | Sampler | рH | Date | Date | | | 9861 | 42° 01.49 | 76° 12.184 | | х | X | 4.6 | 05/13/1998 | 06/17/1998 | Buff-brown clays with no rock | | 9862 | 42°00.,87 | 76°13.45 | | x | X | 5.7 | 05/13/1998 | 06/17/1998 | Buff-brown silty clays with rock | | 9863 | 42°01.29 | 76°17.85 | | х | х | 5.4 | 05/13/1998 | Lost | н н | | 9864 | 42°00.77 | 76°11.71 | | X | x | 5.8 | 05/13/1998 | Lost | и и | | 9865 | 42°01.25 | 76°11.99 | | х | x | 5.6 | 05/13/1998 | Lost | | | 9866 | 42°01.77 | 76°12. 65 | | X | х | NA | 05/14/1998 | 06/17/1998 | Brown silty days with rock | | 9867 | 42°02.58 | 76°12.17 | | X | X | NA | 05/14/1998 | Lost | н | | 9868 | 42°01.33 | 76°11.70 | | х | X | NA | 05/14/1998 | Lost | H II | | 9869 | 42°02.63 | 76°11.78 | | х | х | NA | 05/14/1998 | 06/17/1998 | | | 9870 | 42°02.64 | 76°10.14 | · | x | x | NA | 05/14/1998 | 06/17/1998 | | | 9871 | 42°03.11 | 76°10.62 | | х | | NA | 05/14/1998 | 06/17/1998 | | | 9872 | 42°02.81 | 76°10.69 | | X | х | NA | 05/14/1998 | 06/17/1998 | | | 9873 | 42°02.61 | 76°11.37 | | х | х | NA | 05/14/1998 | Lost | | | 9874 | 42°02.44 | 76°11.74 | | × | х | NA | 05/14/1998 | 06/16/1998 | 4 11 | | 9875 | 42°01.87 | 76°12.18 | | × | х | NA | 05/14/1998 | 06/16/1998 | Heavy red brown day, silt | | 9876 | 42°02.47 | 76°13.51 | | × | х | NA | 05/14/1998 | 06/16/1998 | Heavy red brown day, slit , rocks | | 9877 | 42°02.77 | 76°13.77 | | х | × | NA | 05/14/1998 | 06/16/1998 | | | 9878 | 42°03.40 | 76°15.85 | | х | × | NA | 05/14/1998 | 06/16/1998 | | | 9879 | 42°03.31 | 76°13.730 | | × | × | NA | 05/14/1998 | 06/16/1998 | | | 9880 | 42°03.38 | 76°12.52 | | х | × | NA | 05/14/1998 | Lost | и и | | 9881 | 42°03.46 | 76°12.06 | | × | × | NA | 05/14/1998 | 06/16/1998 | н н | | 9882 | 42°03.41 | 76°11.66 | | × | × | NA | 05/14/1998 | 06/16/1998 | | | 9883 | 42°03.48 | 76°11.00 | | X | × | NA | 05/14/1998 | 06/16/1998 | Brown Silt and gravel | | 9884 | | | | x | x | NA | 05/14/1998 | Lost | и и | | 9885 | 42°03.16 | 76°10.00 | | × | × | NA | 05/14/1998 | Lost | | | 3003 | | 1 | | 1 | | | 1 | | | | | | | | | | | | | | | 1 | | | 1 | <u> </u> | | Comments: pH meter broken 5/14 Sampler 9871 , passive sampler only, at Jones well head GPS location accidentally missed at Location 9885 ## Field Notes Collected During North Tioga Co. Sampling Event | Sample ID | G | PS Location | on | Passive | Soil | Soil | Install/
Collection | Recovery | Comments | |-----------|-----------|-------------|-------|---------|---------|------|------------------------|------------|-------------------------------| | | | Longitude | | | Sampler | рН | Date | Date | | | 0598-01 | 42° 12.19 | 76° 31.84 | NA | X | Х | NA | 05/14/1998 | Lost | Buff-brown clays with no rock | | 0598-02 | 42°12.31 | 76°31.33 | NA | Х | Х | NA | 05/14/1998 | Lost | Organic soil no rock | | 0598-03 | 42°11.84 | 76°32.09 | NA | X | X | NA | 05/14/1998 | 06/18/1998 | Brown silty clays with rock | | 0598-04 | 42°11.88 | 76°31.32 | NA | X | X | NA | 05/14/1998 | Lost | н п | | 0598-05 | 42°11.75 | 76° 31.10 | NA | X | Х | NA | 05/14/1998 | Lost | 11 11 | | 0598-06 | 42°11.04 | 76° 31. 17 | NA | X | Х | NA | 05/14/1998 | 06/18/1998 | 11 11 | | 0598-07 | 42°11.18 | 76° 30.26 | NA | X | Х | NA | 05/14/1998 |
06/18/1998 | Brown silty clays with rock | | 0598-08 | 42°11.30 | 76°29.58 | NA | X | X | NA | 05/14/1998 | 06/18/1998 | н н | | 0598-09 | 42°11.38 | 76°29.43 | NA | X | X | NA | 05/14/1998 | Lost | 11 11 | | 0598-10 | 42°11.78 | 76°29.72 | NA | X | Х | NA | 05/14/1998 | 06/18/1998 | 11 11 | | 0598-11 | 42°12.25 | 76°29.67 | NA | X | Х | NA | 05/14/1998 | Lost | Organic soil no rock | | 0598-12 | 42°11.84 | 76°30.19 | NA | X | Х | NA | 05/14/1998 | Lost | H 11 | | 0598-13 | 42°12.27 | 76°30.69 | NA | X | X | NA | 05/14/1998 | Lost | Brown silty days with rock | | 0598-14 | 42°12.15 | 76°30.13 | NA | X | Х | NA | 05/14/1998 | Lost | 11 11 | | 0598-15 | 42°12.21 | 76°29.78 | NA NA | X | Х | NA | 05/14/1998 | Lost | Organic sandy soil no rock | | 0598-16 | 42°14.30 | 76° 28.18 | NA | Х | Х | NA | 05/14/1998 | 06/18/1998 | Brown silty clays with rock | | 0598-17 | 42°13.53 | 76° 28.18 | NA | X | Х | NA | 05/14/1998 | Lost | n H | | 0598-18 | 42°13.13 | 76°28.73 | NA | Х | х | NA | 05/14/1998 | Lost | Organic sandy soil no rock | | 0598-19 | 42°13.41 | 76°28.86 | NA | X | Х | NA | 05/14/1998 | 06/18/1998 | Brown silty days with rock | | 0598-20 | 42°12.64 | 76°28.90 | NA | X | X | NA | 05/15/1998 | Lost | n 11 | | 0598-21 | 42°12.19 | 76°28.42 | NA NA | Х | х | NA | 05/15/1998 | Lost | n n | | 0598-22 | 42°11.89 | 76°28.36 | NA | Х | X | NA | 05/15/1998 | 06/18/1998 | н и | | 0598-23 | 42°11.31 | 76°28.37 | NA NA | X | X | NA | 05/15/1998 | Lost | | | 0598-24 | 42°10.72 | 76°27.84 | NA | Х | X | NA | 05/15/1998 | Lost | n n | | 0598-25 | 42°11.29 | 76°27.819 | NA | Х | х | NA | 05/15/1998 | 06/18/1998 | n n | | 0598-26 | 42°11.97 | 76°27.07 | NA | X | х | NA | 05/15/1998 | Lost | 11 | | 0598-27 | 42°12.43 | 76°27.13 | NA | X | x | NA | 05/15/1998 | Lost | n n | | 0598-28 | 42°12.59 | 76°27.11 | NA NA | Х | X | NA | 05/15/1998 | 06/18/1998 | 27 | | 0598-29 | 42°12.56 | 76°27.29 | NA | X | Х | NA | 05/15/1998 | Lost | 11 11 | | 0598-30 | 42°12.32 | 76°27.94 | NA | X | X | NA | 05/15/1998 | 06/18/1998 | Organic sandy soll no rock | Comments: pH meter broken 5/14 ## Field Notes Collected During North Tioga Co. Sampling Event | Sample ID | | SPS Locatio | n | Passive | Soil | Soil | Install/
Collection | Recovery | Comments | |-----------|----------|-------------|-----------|----------|---------------------|----------|------------------------|--------------|----------------------------| | | Latitude | Longitude | Elevation | Sampler | Sampler | рН | Date | Date | | | | | | | | V | NA | 05/15/1998 | 06/18/1998 | Brown silty days with rock | | 0598-31 | 42°12.68 | 76°27.85 | NA
NA | X | X | NA
NA | 05/15/1998 | 06/18/1998 | n " | | 0598-32 | 42°12.85 | 76°27.29 | NA NA | | $\frac{\hat{x}}{x}$ | NA NA | 05/15/1998 | Lost | 8 .11 | | 0598-33 | 42°14.15 | 76°26.99 | NA NA | X | x | NA NA | 05/15/1998 | 06/18/1998 | 11 11 | | 0598-34 | 42°13.83 | 76° 26.84 | NA NA | X | x | NA NA | 05/15/1998 | Lost | и | | 0598-35 | 42°13.11 | 76° 26. 58 | NA | X | x | NA NA | 05/15/1998 | Lost | H 11 | | 0598-36 | 42°13.29 | 76° 30.26 | NA NA | X | X | NA NA | 05/15/1998 | 06/18/1998 | и п | | 0598-37 | 42°14.70 | 76°25.543 | NA NA | X | x | NA NA | 05/15/1998 | Lost | | | 0598-38 | 42°14.21 | 76°25.86 | NA NA | X | X | NA NA | 05/15/1998 | Lost | n n | | 0598-39 | 42°13.25 | 76°25.87 | NA NA | X | x | NA NA | 05/15/1998 | 06/18/1998 | . 11 11 | | 0598-40 | 42°14.02 | 76°23.85 | NA
NA | X | l î | NA NA | 05/15/1998 | 06/18/1998 | n ti | | 0598-41 | 42°13.78 | 76°24.34 | | | X | NA NA | 05/15/1998 | 06/18/1998 | 11 11 | | 0598-42 | 42°13.71 | 76°24.59 | NA NA | X | x | NA NA | 05/15/1998 | Lost | 11 11 | | 0598-43 | 42°13.54 | 76°325.21 | NA NA | X | l x | NA NA | 05/15/1998 | 06/18/1998 | 11 11 | | 0598-44 | 42°12.70 | 76° 26.53 | NA NA | x | x | NA NA | 05/15/1998 | Lost | Organic sandy soil no rod | | 0598-45 | 42°12.82 | 76° 25.95 | NA NA | | | NA NA | 05/15/1998 | Lost | n ii | | 0598-46 | 42°13.60 | 76° 25.47 | NA NA | X | X | NA NA | 05/15/1998 | 06/18/1998 | n ti | | 0598-47 | 42°13.07 | 76°25.54 | NA NA | | X | NA NA | 05/15/1998 | Lost | Brown silty days with rod | | 0598-48 | 42°13.25 | 76°24.38 | NA NA | X | | NA
NA | 05/15/1998 | Lost | n n | | 0598-49 | 42°13.17 | 76°25.18 | NA | X | X | NA NA | 05/15/1998 | 06/18/1998 | н п | | 0598-50 | 42°13.14 | 76°25.10 | NA NA | X | X | NA
NA | 05/15/1998 | Lost | 11 11 | | 0598-51 | 42°13.20 | 76°23.97 | NA | X | X | NA
NA | | Lost | | | 0598-52 | 42°13.14 | 76°23.90 | NA | X | Х | NA NA | 05/15/1998 | LOSE | | | | | | | | | | | | | | | | ļ | | <u> </u> | | | | - | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | ļ | | | <u> </u> | | | <u> </u> | | | | | ļ | | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | <u> </u> | | | 1., | | | | | | | | | <u> </u> | | Direct Geor
Client: NYSE
Project Num | RDA | | | FREE SCHLIG
DATE RECH | | | 10/26/98 CG | | | | | | | | | | | | | | |----------------------------------|-------------------|----------------------|------|---------------------------|---------------------|----------------------|-------|--|-----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------------|---------------------------------|------------------------------|----------------------------------|-------------------------------|----------------------------------|------------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------------|-----------------------------| | GC | LABIDA | | Run | Client ID | X-Coord | Coord | | Project Name | Ethane | Ethene | Propane | Propens | SAD SKAP II | nButane | nPentano | atlexane | Summetto | n (through C6 | \$(C) | *(C2 | \$(C2+ | \$ (C3+ | | | | | | | | GI6H00 | | 1053 | Code | 9801 | -20 | 190 | Notes | 1906.7 | 384.60 | 1002.7 | 334.04 | 854 55 | 34 240 | 253 91 | 694.4 | 1006.7 | C1+
4580.43 | C2+
2673.73 | /C1+) | /C2+)
14.38739 | (CI+)
50.3729 | /C2+)
85 61261 | 0.2011 | 0.1752 | eC4/C1
0.1332 | 0.8684 | nC4/C2
0.6601 | #CS/C2
1.8051 | | G16H00
G17H00
G17H00 | 22 7383
0 7383 | 1054
1055
1056 | | 9802
9803
9804 | 125
-10 | 172
92
355 | | 9535.3
3284.7 | 176.4
1807
295.65 | 647.34
6850.1
6465.6 | 175.8
1916.1
548.68 | 547 64
6351
2449.5 | 189.9
29.356 | 147.29
1201.8
364.04 | 571.06
1797.7
587.07 | 1676.6
2801.2
986.04 | 3805 15
19059 1
6066 18 | 2747.15
9523.8
2781.48 | 27.804
50.030
54.148 | 6 42120
18 97352
10 62923 | 72.1956
49.9698
45.8522 | 93.57880
81.02648
89.37077 | 0.1667
0.1895
0.0900 | 0 1662
0 2009
0 1670 | 0.1392
0.1260
0.1100 | 0.9966
1.0604
1.8558 | 0 8350
0 6651
1 2313 | 3.2373
0.9949
1.9657 | | G17H00
G17H00
G17H00 | 5 7383
6 7383 | 1057
1058
1059 | | 9805
9806
9807 | 32
160
270 | 485
460 | | 7245 5
3698.7
976.51 | 1645.3
659.49
223.6 | 4259 2
4929 9
2597 9 | 1564.2
564.84
303.82 | \$412.3
2914.9
970.71 | 241.68
40.262
0 | 1507.5
423.29
287.1 | 1817.5
867.8
680.68 | 7182 S
1536 B
983.71 | 20962.5
7750.92
3455.42 | 13717
4052 22
2478 91 | 34 564
47.719
28 260 | 11.99461
16.27478
9.02009 | 65.4359
52.2805
71.7396 | 88 00539
83.72522
90.97991 | 0.2271
0.1783
0.2290 | 0.2159
0.1527
0.3111 | 0 2081
0 1144
0 2940 | 0.9507
0.8565
1.3588 | 0.9162
0.6418
1.2640 | 1.1047
1.3159
3.0442 | | G17H000
G17H000
G17H000 | 7383
7383 | 1060
1061
1062 | | 9809
9810 | 415
310
219 | 480
285
230 | | 5171.2
6121.9
8579.9 | 602.21
684.86
1481.8 | 8286.6
3775.1
6862.1 | 976 12
790.78
1586.9 | 5938 6
3398 3
6895.1 | 68 803
87.762
136.28 | 500 45
657 03
907.77 | 816 47
1174.1
1972.6 | 2496 1
12404
12219 | 10562.55
21832.69
26747.77 | 5391.35
15710.79
18167.87 | 48.958
28.040
32.077 | 11.16993
4.35930
8.15616 | 51.042)
71.9599
67.9229 | 88 83007
95 64070
91 84384 | 0 1165
0 1119
0 1727 | 0 1888
0 1292
0 1830 | 0.0968
0.1073
0.1056 | 1.6209
1.6546
1.0709 | 0.8310
0.9593
0.6126 | 1.3556
1.7143
1.331) | | G17H001
G17H001 | 0 7383
1 7383 | 1063
1064
1065 | | 9812
9813 | 37
35
15 | 565
520
615 | | 2203.8
2778.4 | 257.8
504.9 | 3903.3
3492.4 | 389.14
550.15 | 2204 8
7103 8 | 0
74 51 j | 266 03
351 8 | 604.95
458.13 | 1034.5 | 4756.22
6055.38 | 2552.42
3276.98 | 45.883 | 15.40748 | 54.1168 | 84 59252 | ND
0.1170
0.1817 | ND
0.1766
0.1980 | ND
0.1207
0.1266 | ND
1.5095
1.0896 | ND
1.0319
0.6968 | ND
2.3464
0.9074 | | G171100 | 7383
3 7383 | 1066
1067
1068 | | 9614
no sample
9616 | -10
55
50 | 710
710
725 | | 3914.3
6033.7 | \$16.28
564.50 | 1810.4
5425.2 | 756.89
925.15 | 2460 Z
4586 9 | 108.05
85.313 | 563.79 | 774 | 7228 (| 14087.43
0
9530.46 | 10173.13
0
3496.76 | 27.786
63.310 | 8 02388
16.14437 | 72.2142
36.6904 | 91.97612
83.85563 | 9.2085
ND
9.0936 | 0.1934
ND
0.1533 | 0.1455
ND
0.0934 | 0.9272
ND
1.6388 | 8.7937
ND
9.9987 | 0.8470
ND
0.7013 | | G1714001
G1714001 | 5 7383
6 7383 | 1069
1070
1071 | | 9817
9818
9819 | 145
210
315 | 810
816
815 | | 2539
8003.3
2409.4 | 373 5
913.32
238 92 | 2651
5046.5
3786.3 | 471.99
964.73
372.34 | 2678.4
6265.5
2430 | 49.742
197.23
61.150 | 245 41
601 74
209 72 |
386.4
665.08
201.35 | 1611 1
6865 2
3060 4 | 5627 4
18013.37
6492.13 | 3088 4
10010 07
4082 73 | 45 119
44 430
37 113 | 12 09364
9.12401
5.85197 | 54 8815
55 5702
62 8874 | 87.90636
90.87999
94.14803 | 0 1471
0 1141
0 0992 | 0 1859
0 1205
0 1545 | 0.0752
0.0752
0.0070 | 1.0563
1.0563 | 0.6571
0.6580
0.8778 | 0.7282
0.8420 | | G1711001
G1711001
G1711001 | 7383
7383 | 1072
1073
1074 | | 9820
9821
9822 | 350
305 | 550
715
990 | | 1259.8
1893.7
973.82 | 216.29
237.4
163.15 | 2382 7
3972 4
1610 2 | 442.5
441.49
242.28 | 1565.6
1665.3
1133.1 | 39 039
0 | 274 53
360.75
297.08 | 722.92
1016
475.43 | 4538 4
2661 9
1419 5 | 7454.64
6611.24
3571.28 | 6194 84
4717 54
2597 46 | 16.900
28.644
27.368 | 3.49145
5.03228
6.28114 | 83.1005
71.3564
72.7319 | 96 50855
94 96772
93.71886 | 0.1717
0.1254
0.1675 | 0.3512
0.2331
0.2486 | 0.2179
0.1905
0.3051 | 2 0459
1 8597
1 4850 | 1 2645
1 5196
1 8209 | 3.3424
4.2797
2.9142 | | G17H002 | 7383
7383 | 1075
1076
1077 | | 9823
no sample
9825 | 215
150
110 | 915
910 | | 2121.4
3042.6 | 329.47
455.07 | 2879.4
3835.2 | 583 94 | 2638.1 | 27.458 | 465 33 | 811.5 | 2501.1
1453.4 | 6745.61
7026.58 | 4624 21
3983.98 | 31.449 | 7.12489 | 68 5514
56 6987 | 92.87511
88.57750 | 0.1553
ND
0.1496 | 0.2059
ND
0.1919 | 02194
ND
01542 | 1.3254
ND
1.2832 | 3.4124
ND
1.0306 | 2 4630
ND
2 2469 | | G17H002 | 7383
7383 | 1078
1079
1080 | | 9626
9627
no sample | 125
111
180 | 1010
1140
1265 | | 2056.9
3795.9
2056.9 | 330.85
752.24
330.85 | 3363.4
5535.1
3363.4 | 437.82
865.63
437.82 | 1838 3
3869 4
1838 3 | 25.279
71.147
25.279 | 453 66
646 95
453 66 | 760 64
844 08
760 64 | 4078.7
5196.6
4078.7 | 8118.57
12101.4
8118.57 | 6061.67
8305.5
6061.67 | 25.336
31.367
25.336 | 5.45807
9.05713
5.45807 | 74 6643
68 6326
74 6643 | 91.54193
90.94287
91.54193 | 0.1608
0.1962
0.1608 | 0.2129
0.2280
0.2129 | 0.2206
0.1704
0.2206 | 1.3233
1.1507
1.3233 | 1.3712
0 8600
1.3712 | 2 2990
1 1221
2 2990 | | G17H002
G17H002
G17H002 | 7383
7383 | 1081
1082
1083 | | 9829
9830
9831 | 135
120
220 | 1362
1355 | | 564 05
971 8
3510.4 | 60 166
157 63
552 36 | 963.11
2758.4 | \$9 607
160 54
668 72 | 296.94
862.51
2941.9 | 0
0
53.717 | 68 887
148 99
4[6 6] | 185 29
529 57
631.13 | 273.78
2164.3
1717.3 | 1191.78
4132.83
7496.54 | 627.73
3161 03
3986.14 | 47.328
23.514
66.827 | 6.39861
4.98667
13.85752 | 52,6716
76,4858
53,1731 | 93 60139
95 01333
86 14248 | 0 0712
0 1622
0 1574 | 0 1057
0 1652
0 1905 | 0 1221
0 1533
0 1167 | 1.4840
1.0185
1.2106 | 1.7151
0.9452
0.7542 | 4.6131
3.3596
1.1436 | | G17H002 | 7363
7363 | 1084
1085
1086 | | 9632
no sample
9634 | 340
385
399 | 1380
1235
1245 | | 5486.9
10651 | 1021.1 | 2611.2 | 790.04
1588 8 | 2551.6
9715.1 | 96.426 | 727.39
920.12 | 793.04
618.16 | 5305 1
1002 | 13977.14
0
15801.18 | 6490 24
0
5150.18 | 39.256
67.406 | 19.82649 | 60.7438
32.9936 | 89.69794
80.17351 | 0 1594
ND
0 0959 | 0 1440
ND
0 1492 | 01336
ND
0.0664 | 0.9032
ND
1.5560 | 88316
ND
89011 | 8 9067
NED
9 6054 | | G20H000
G20H000 | 7383
7383 | 1087
1088
1089 | | 9835
9836
9837 | 380
500
626 | 1135
1145
1250 | | 13832
3974.8
11187 | 1692.6
211.46
1265.6 | 14072
6045.2
12689 | 2657.4
278.29
2016.1 | 16478
5728 4
10719 | 253.09
69.414
137.3 | 1075.1
224.11
1197.6 | 673 88
107 22
831.05 | 3760.4
453.26
1838 | 23691.36
5249.14
18335.35 | 9839.38
1274.34
7148.35 | 59.384
75.723
61.013 | 17.16741
16.59369
17.70479 | 41.6159
24.2771
38.9867 | 82 83259
83 40631
82 29521 | 01224
0.0532
0.1131 | 0.1921
0.0700
0.1802 | 0 0777
0 0564
0 1071 | 1.5700
1.3160
1.5930 | 0 6352
1,0596
0.5463 | 8.3981
8.3070
8.4566 | | G20H000 | 7383
7383 | 1090
1091
1092 | | 9838
9839
no sample | 510
440
440 | 1335
1528
1632 | | 17356
10460 | 2096.5
1718.4 | 15047 | 2765.4
1644 | 12563
7207 | 228.73
193.26 | 910 26 | 902.15
577.69 | 1608.6
1286.4 | 26075.95
16596.73 | 6719.95
6136.75
0 | 63.024 | 24.04257
28.00179 | 33.4406
36.9756 | 75 95743
71 99821 | 9 1208
9 1643
ND | 9.1593
0.1572
NED | 9.007%
9.0070
ND | 1.3191
0.9567
ND | 0.5297
ND | 9.4303
9.3362
ND | | C30H001
C30H001
C50H000 | 7383
7383 | 1093
1094
1095 | | 9841
9842
9843 | 435
431
450 | 1620
1710
1844 | | 2409 6
2600 6
13367 | 295.93
252.17
1283.1 | 2978.9
2319.6
4469.3 | 385 I
431 67
1335 8 | 12604
3853 5
9957.1 | 0
0
496 03 | 258 21
255 27
779.62 | 234 15
293.48
720.23 | 1987.2
1185
1762.7 | 5570.19
3018.19
19268.45 | 3160.59
2417.59
3881.45 | \$3.259
\$1.623
69.676 | 9.36313
10.43064
21.81605 | 56.7412
48.1765
30.5237 | 90 63687
89 56936
78 18395 | 0 1228
0.0970
0.0956 | 0.1598
0.1660
0.0998 | 0.1072
0.0982
0.0562 | 1.3013
1.7116
1.0411 | 0.8725
1.0123
0.6076 | 0.7912
1.1638
0.5613 | | G20H001
G20H001 | 7383
7383 | 1096
1097
1098 | | 9814
9815
9816 | 360
250
220 | 1775
1760
1622 | | 12210
15101
8806 | 1876-2
2852-3
1325-5 | 6567
9410.4
7803.2 | 2006.2
2992.9
1508.3 | 9354
12416
103710 | 262 57
271.85
115 69 | 1094 \$
1618 4
811.35 | 813.39
1369 8
678 05 | 2344.9
2579.1
1474.1 | 20345.19
26513.5
14603.3 | 8135 19
11412.5
5797.3 | 60.014
56.956
60.301 | 23 06277
24 99277
22 86409 | 39 9858
43 0441
39 6986 | 76 93723
75 00723
77 13591 | 0 1537
0 1889
0 1505 | 0.1643
0.1902
0.1713 | 0.0996
0.1072
0.0921 | 1.0693
1.0493
1.1379 | 0.5834
0.5674
0.6121 | 0 4336
0 4802
0 5115 | | G20H001
G20H001 | 7383
7383 | 1100
1101 | | 9847
9648
9849 | 340
600
740 | 1680
1800
1805 | | 7126.2
15180
6123.3 | 692.34
1860.3
374.74 | 7343.8
12952
7807.7 | 876.65
2201
597.17 | 11961
17654
5033 7 | 107.54
259.72
45.153 | 506.91
1240.1
539.43 | 432.41
845.51
1017.6 | 1219.6
1837.3
1078.9 | 10854.11
23164.21
9731.14 | 3727.91
7964.21
3607.84 | 65 654
65 532
62 925 | 18 57180
23 29974
10 38682 | 34.3456
34.4679
37.0752 | 81 42820
76 70026
87 61316 | 0.0972
9 1225
9 0612 | 0.1450
0.097\$ | 8 071 i
9 0817
0 0861 | 1 2662
1 1831
1 5936 | 0.7322
0.6666
1.4395 | 9 4246
8 4545
2.7155 | | G20H0011
G20H0015 | 7383
7383 | 1102
1103
1104 | | 9850
9851
9852 | 725
730
595 | 1692
1570
1580 | | 6836.4
31701
12066 | 441.82
2323.3
1436 | 6122.6
16617
14146 | 914 03
4172 8
2048 5 | 6789 5
30669
11094 | 94.183
2054.1
134.34 | 114.68
1069.7
1078.5 | 108.00
1103.9
861 | 738.74
1405.4
3341.2 | 9634.55
41776.1
20633.2 | 2998.15
10075.1
8767.2 | (9.514
75.883
\$7.917 | 14.73642
23.05982
36.40204 | 30.4859
24.1169
42.0828 | 85 26358
76 94018
83 59796 | 0.0646
0.0733
0.1192 | 0.1337
0.1316
0.1698 | 9.0607
9.0337
9.0894 | 2.0686
1.7961
1.4245 | 9.4604
9.7500 | 1.1065
0.4751
0.5967 | | G20H002
G20H002 | 7383
7383 | 1105 | | 9853
9854
9855 | 470
310
198 | 1980
1905
1850 | | 7217.1
84%6 | 1843 6
1028 4
1231.1 | 9558 2
4388
6317 8 | 2244.8
1346.1
1599.6 | 9866 7
6170
7143 2 | 103.76
80.117
101.93 | 1929.4
712.44
868.57 | 3945.1
773.72
758.01 | 2220 9
1249 1
1699 6 | 23421.8
12326.86
14653.48 | 12183.8
5109.76
6156.86 | 47.981
58.548
57.963 | 15.13157
20.12619
19.99552 | 52.0191
41.4522
42.0165 | 84 86843
79 87361
80 00448 | 0.1641
0.1625
0.1449 | 0.1998
0.1865
0.1863 | 0.1717
0.0967
0.1022 | 1.2176
1.3089
1.2993 | 1.0465
0.6928
0.7055 | 2.1399
6.7534
0.6157 | | G20H002 | 7383
7383 | 1108
1109
1110 | | 9656
9657
no sample | 510
580
585 | 2060
2075 | | 7693.1
5708.3 | 1303
913.59 | 9344.5
6912.3 | 1537.7
929.46 | 10189
9744.7 | 91 227
96 324 | 899 16
587.13 | 790 18
405.72 | 1313.6
428.47 | 13536.74
8972.67 | 5843.64
3264.37 | \$6.831
63.619 | 22.29775
27.98672 | 43.1647
36.3613 | 77.70225
72.01326 | 0 1694
0 1600
ND | 0 1999
8 1628
ND | 0.1029
MD | 1801
 18174
 ND | 94901
94427
ND | 9.4064
9.4441
MD | | G20H002 | 7383
7383 | 1111
1112
1113 | | 9660
9661 | | 2118
2165
2020 | | 9843.4
10398 | 1065.6
1058 4 | 10384
15889 | 1211.9 | 19462 | 133 02 | 678 67
1423.2 | \$33.57
1191.4 | 1289.3 | 14622 44
17851 1 | 4779.04
7453.1 | 67317
54.249 | 22.29737
14.20080 | 32.6829
41.7515 | 77.70263
85.79920 | ND
0 1083
0 1018 | ND
0 1231
0 1576 | ND
0.0609
0.1369 | ND
1.1373
1.5486 | MD
84349
1.3447 | ND
9 5007
1 1257 | | G20H0026
G20H0036 | 7383
7383 | 1114
1315
1116 | | 9862
9863
9864 | | 2075
2210
2425 | | 9063.5
9066 | 2546.3
740.23
1010.9 | 10603
8994.7
9077.4 | 1864.7
1417.3
1359.7 | 16495
28004
18344 | 222 62
907 49
378
36 | 1048 6
514 27
720.14 | 1027
535.29
661.36 | 3772.9
954.05
744.68 | 23778.5
13224.64
13562.78 | 10259.5
4161.14
4494.78 | 56 854
68 535
66 845 | 24 81895
17 78912
22 48053 | 43.1661
31.4651
33.1553 | 75 18105
82 21088
77 51947 | 0 1843
9 0617
0 1115 | 0 1379
0 1564
0 1900 | 0.0776
0.0547
0.0794 | 9.7323
1.9147
1.3450 | 6 4118
6 6947
6 7124 | 9 4033
9 7231
9 4542 | | G20H003
G20H003
G21H000 | 7383
7383 | 1117
1118
1119 | | 9865
9866
9867 | 335
459
510 | 2355
2335
2475 | | 6580.3
9999.3
12065 | 718 29
1210 1
1666 \$ | 8052.5
8551.6
8798.7 | 2654 9
1516 5
2169 4 | 7375.2
11506
11844 | 1665.4
411.7
495.07 | 558 67
946 63 | 178 43
361 49
780 56 | 70.819
180.18
1356.7 | 10630.439
13826.26
18984.81 | 4050 139
3626 96
6919 81 | 61 901
72 321
63 551 | 17.73495
31.62040
24.08303 | 36.0995
27.6789
36.4492 | 62 36505
68 37960
75 91697 | 0.1092
0.1210
0.1361 | 0.4035
0.1517
0.1796 | 0 0630
0 0539
0 0785 | 3 6961
1 2532
1 3016 | 0.9954
0.4617
0.5600 | 0.3484
0.2987
0.4484 | | C31H000 | 7383
7383 | 1120
1121
1122 | | 9868
9869
9870 | 590
642
755 | 2620
2755
2812 | | 4706 1
10401
1000 2 | 366 18
1199 2
37.267 | 6543.6
20170
530.99 | 601.39
20044.2
48.677 | \$777.7
10860
321.62 | 51 679
126 7
0 | 338 43
737 93
92 227 | 255 41
645 3
164 2 | 720 64
1600 6
119 09 | 7068.1\$
34628.23
1461.661 | 2362 05
24227 23
461.461 | 66 582
30 036
68 429 | 15 50264
4 94980
8 07587 | 33.4182
69.9638
31.5710 | 84 49736
95 05030
91 92413 | 0 0778
0 1153
0 0373 | 0 1440
1.9271
0.0487 | 6 07 19
6 0706
6 0922 | 1.8608
16.7146
1.3062 | 6 9242
6 6 1 5 4
2 4 7 4 6 | 0 64775
0 5301
4 4060 | | G21H000
G21H000 | 7343
7383 | 1123
1124
1125 | | 9871
9872
9873 | 910
775 | 2685
2685
2562 | | 1872
2529 2
8242 6 | 143.%
192.82
1516.1 | 3314
2332
5723 1 | 247.0
290.22
1821.1 | 1927.7
2214
6586.1 | 0
0
11834 | 199.98
147.63
880.69 | 116.93
169
599.52 | 500.93
534 47
1564.9 | 3081.6
3871.34
14624.91 | 1209 6
1342 14
6382 31 | 60.748
65.331
56.360 | 11 90146
14 36661
23 75472 | 39 2523
34 6686
43 6400 | 88 09854
85 63339
76 24528 | 0 (D/6)
0 (7/6)
0 (839 | 0 1324
0 1179
0 2209 | 0 1066
0 0584
0 1066 | 17213
15464
12012 | 1.3011
0.7656
0.5609 | 0.8122
0.8745
0.3954 | | G21H001
G21H001 | 7383
7383 | 1126
1127
1128 | | 9674
9675
9676 | 710
330
710 | 2285
2015 | | 5823.7
3152.3
5866 | 649
36273
727.95 | 8803 6
6299 3
6910.7 | 1057.3
\$34.81
982.73 | 4690
2545 6
3700 9 | 67 478
43 932
61 156 | 510 99
307 39
577 04 | 445.56
253.64
509.11 | 1081.4
618.15
1462.3 | 9567.95
5229.02
10125.13 | 3744 25
2076 72
4259 13 | 60 867
60 285
57.935 | 17 33324
17 46449
17 09152 | 39 1333
39 7153
42 0649 | 82 66676
82 53351
82 90848 | 0 1114
0 1151
0 1241 | 0 1816
0 1697
6 1675 | 0 0077
0 0975
0 0984 | 1 6291
1 4744
1 3500 | 0.7873
0.6474
0.7927 | 0 6465
0 6993
0 6994 | | G21H001
G21H001 | 7383
7383 | | | 9877
9878
9879 | 872
965
990 | 1965
2120 | | 3689
3745.7
3522.2 | 317 05
565 35
496 89 | 2465 4
5637.2
3286 6 | 435 62
840.16
765.8 | 2237 6
3437 1
3440.4 | 35 064
47 194
43 014 | 368 4
440 85 | 868.31
267.59
438.41 | 12385
1191.8
1176.4 | 18291.06
6999
6640.35 | 14602 06
3253.3
3318 35 | 30 166
53 518
51 490 | 2 17127
17 37774
14 97401 | 77.8317
44.4824
48.5100 | 97 82873
82 62226
85 02599 | 0 0839
6 1509
0 1411 | 0 1101
0 2243
0 2174 | 0 1616
0 1037
0 1252 | 1.3740
1.4961
1.5412 | 1.860)
0.6670
0.8672 | 17787
04733
08023 | | C21H001 | 7383
7383 | 1133 | | 9680
9681
9682 | 1000
1040
995 | 2245
2360
2420 | | 4767.2
4331
4850.5 | 609 11
666.25
1053.3 | 3085.2
4156.4
1524 | 874.91
941.49
902.18 | 2927 6
3650 2
2009 4 | 47 805
68 089
114 98 | 420 12
495 81
522 43 | 579 64
541 09
368 47 | 944.37
997.12 | 8281.79
7923.01
8394 | 3514.58
3592.01
3743.5 | 97.543
34.664
54.441 | 17.33095
18.54811
28.13677 | 42 4373
45 3364
43 5395 | 82 66905
81 45189
71 86323 | 0 1536
0 1536
0 2172 | 0 1435
0 2174
0 1060 | 9 0061
9 11 45
9 1077 | 1 4364
1 4131
0 8545 | 9.6897
9.7442
9.4960 | 0.9516
0.8166
0.3498 | | C31H003
C31H003 | 7363 | 1135
1136
1137 | 3 | 9683
9684
9685 | 960
935 | 2570
2700 | | 548.37
8325
65056 | 56.729
1053.6
6114.5 | 501.79
5125.8
21581 | 55 015
1143 3
5202 3 | 3376 4
10840
36353 | 0
502 21
1448 | 0
543.51
2646 | 0
321.48
1635.1 | 159 46
395 51
1554 | 819 574
11962 4
62227 9 | 271 204
3657 4
17171 9 | 66 909
69 477
79 117 | 20 91746
28 80735
35 60799 | 33 0906
30 5231
30 6633 | 79 08254
71 19265
64 39241 | 0 1035
0 1266
0 0940 | # 1003
1373
0800 | ND
9 0653
9 0407 | 0 7676
1.0651
0.8506 | ND
95159
94327 | ND
0.3051
0.2707 | | • | • | ſ | | | | 1 | | | | | | | | | | | | | | | | | ND | ND | NO | ND | ND | ND | #### Data Revised 10/26/98 DIRECT GEOCHEMICAL SYNCHRONOUS SCANNED UV FLUORESCENCE SPECTRA DATA STAGECOACH FIELD AREA, TIOGA COUNTY, NY ClientNYSERDA es. Doc solvent extracted Method:Client collected surrace: Date Received: May 28.1994 | | | Date Receive | nd: May 28.19 | 3 0 4 | | | | | | | | | |--|--|--|--|-----------------------|--------------------------------------|---------------------------------|------------------------------------|--|---|---------------------------------------|--------------------------------------|---| | | | | | | | | | | | INTENSITI | | | | λ-Coord. | Y-Coord. | | SPIKE | DILL | CLIENT | | | | | e intensity l. | HILE) | Total | | | | LAB ID# | CODE | FCTR | ID# | 290mm | 320nm | 350mm | 410mm | 44mm | 76922 | 5852 | | 50 | 172 | 1053 | Dilution | 200 | 9802 | 2430 | 157m) | 5047 | 138301 | 134238 | M97 | 9250'c | | 50 | 172 | 1064 | Dilution | 5() | 9802 | 574 | 2353 | 8024 | 13200 | 10000 | 82654 | 01477.3 | | 125 | 92 | 1055 | Dilution | 200 | 9803 | 3203 | 17010 | 73147 | 131368 | 3502 | 2138 | 2518.2 | | -10 | 355 | 105e | Dilution | 10 | 98(14 | 207 | 961 | 3944 | 5321 | | 2224H | 1933-0.5 | | 32 | 411 | 1057 | Dilution | 1000 | 9805 | 14008 | 71555 | 201450 | 344383 | 284495
23(X) | 1287 | 19526 | | les) | 485 | 1058 | Dilution | 10 | 9806 | 290 | 807 | 3-04 | 377e | | 1218 | 1511.4 | | 270 | 460 | 1054 | Dilution | 10 | 9807 | 180 | COPEN | 2414 | 3020 | 748 | * | 594.1 | | 415 | 480 | 1060 | Dilution | 10 | 9808 | 144 | 247 | 910 | 1202 | | 7408 | 8185.0 | | 310 | 285 | 1061 | Dilution | 20 | 98(% | 521 | 3483 | 12111 | 17406 | 11245 | | | | 219 | 230 | 1062 | Dilution | 50 | 9810 | 2181 | 8859 | 22000 | 27044 | 16718 | 7914 | 14119.3 | | 35 | 520 | 1064 | Neat | 11 | 9812 | 76 | 150 | 355 | 267 | 144 | 80 | 341.5 | | 15 | 615 | 1065 | Neat | 11 | 9813 | 57 | 165 | 500 | 674 | 380 | 213 | | | -10 | 710 | 1000 | Dilution | 200 | 9814 | 3253 | 18435 | 77767 | 133405 | 101341 | 70,441 | 62510.0 | | 50 | 725 | 1068 | Dilution | 2 | 9810 | 133 | 508 | 1442 | 1571 | 950 | 557 | 842.3 | | 145 | 810 | 1060 | Dilution | 10 | 9617 | 215 | 1124 | 3514 | 4590 | 2788 | 1547 | 2197.8 | | 210 | 810 | 1070 | Neat | 1 | 9618 | 35 | 58 | 183 | 75 | 40 | 24 | 74.9 | | 315 | 815 | 1071 | Neat | 1 | 9819 | 35 | 59 | 178 | 76 | 38 | 73 | 74.2 | | 145 | 550 | 1072 | Dilution | 4 | 9620 | 110 | 600 | 2032 | 2472 | 1420 | 713 | 1205.4 | | 350 | 715 | 1073 | Dilution | 2 | 9821 | - 00 | 257 | 805 | 777 | 45. | 217 | 423.3 | | 305 | 990 | 1074 | Neat | 1 | 9822 | 60 | 214 | 700 | 403 | 240 | 142 | 317.2 | | 215 | 1045 | 1075 | Dilution | 10 | 9823 | 260 | 1599 | 5015 | 5549 | 3288 | 1796 | 2843.n | | 110 | 910 | 1077 | Dilution | 2 | 9825 | 74 | 177 | 510 | 549 | 330 | 150 | 203,0 | | 125 | 1010 | 1078 | Dilution | 50 | 982o | 872 | 576l | 23094 | 35336 | 24457 | loloi | 16245.2 | | . 111 | 1140 | 1079 | Dilution | 20 | 9827 | 364 | 1671 | 5000 | 7028 | 4081 | 2453 | 3436.2 | | 135 | 1240 | 1061 | Dilution | 50 | 9829 | 4704 | 19553 | 10575 | 745 | <u>22</u> 9 | 197 | 7155.4 | | 120 | 1362 | 1082 | Dilution | 10 | 9830 | 1834 | 870? | 6130 | 3428 | 20-2 | 1293 | 4278.4 | | 220 | 1355 | 1083 | Diluton | 100 | 9831 | 1112 | 4773 | 16331 | 23864 | 150el | 9880 | 11193.2 | | 340 | 1380 | 1084 | Dilution | 100 | 9832 | 2785 | 15729 | 55ee5 | 81419 | 54404 | 36408 | 38401.2 | | 399 | 1245 | 108e | Neat | 1 | 9834 | 90 | 222 | 041 | 701 | 380 | 210 | 368.3 | | 380 | 1135 | 1087 | Dilunon | 50 | 9835 | 844 | 4412 | 18539 | 31045 | 22893 | 11630 | 13355.n | | 500 | 1145 | 1088 | Neat | 1 | 983o | 62 | ₩ | 51 | 34 | Į0 | 13 | 40.2 | | e26 | 1250 | 1089 | Dilution | 10 | 9837 | 232 | 831 | 3162 | 3910 | 2538 | 1625 | 1952.0 | | 510 | 1335 | 1090 | Nest | 1 | 9838 | 71 | 22 | 040 | e21 | 355 | 182 | 348.2 | | 440 | 1528 | 1091 | Dilution | 10 | 9839 | 317 | 040 | 2267 | 3674 | 2465 | 1404 | 1001.8 | | 435 | 1020 | 1093 | Dilution | 50 | 9841 | 1690 | 5430 | 3240 | 508 | 304 | 257 | 2220.8 | | 431 | 1710 | 1094 | Dilution | 2 | 9842 | 79 |
287 | 1245 | 1580 | 1035 | 047 | 708.8 | | 450 | 1844 | 1095 | Dilution | 100 | 9843 | 1008 | 10063 | 54090 | 73050 | 54883 | 39898 | 35753.8 | | 360 | 1775 | 1090 | Dilution | 100 | 9841 | 1640 | 76 0 0 | 33128 | 51551 | 36102 | 24704 | 23735.7 | | 250 | 1760 | 1097 | Dilution | 200 | 9840 | 3851 | 19598 | 73824 | 127350 | 99201 | 76056 | 60135.6 | | 220 | 1622 | 1098 | Dilution | 10 | 984o | 178 | 679 | 2797 | 4517 | 3232 | 2023 | 2039.0 | | 340 | 1680 | 1099 | Dilution | 2 | 9847 | 80 | 104 | 304 | 204 | 139 | 94 | 193.2 | | 600 | 1800 | 1100 | Dilution | 10 | 9848 | 188 | 728 | 2807 | 4123 | 3040 | 1758 | 1932.7 | | 740 | 1805 | 1101 | Dilution | 10 | 9849 | 104 | 477 | 2122 | 151e | 921 | 571 | 970.0 | | 725 | 1692 | 1102 | Dilution | 2 | 9850 | 122 | 187 | 058 | 018 | 354 | 225 | 362.3 | | 730 | 1570 | 1103 | | | 9651 | 418 | 1667 | 5743 | 8087 | 5004 | 3893 | 4074.0 | | 595 | 1580 | 1103 | Dilution | 20 | 9852 | 402 | 1554 | | 8838 | 0123 | 3824 | 4057.3 | | 470 | 1980 | 1105 | Dilution | | | | 2958 | 5004 | | 13828 | 9580 | 8,003 | | 310 | 1905 | | Dilution | 50 | 9853 | •70 | | 11410 | 18880 | | | 340.7 | | 198 | | 1100 | Dilution | 2 | 9854 | 73 | 164 | 502 | 708 | 450 | 250 | | | | 1850 | 1107 | Dilution | 10 | 9855 | 135 | 543 | 2208 | 4080 | 2952 | 1830 | 1773.6 | | 510 | 2116 | 1108 | Dilution | 20 | 9850 | 335 | 1557 | 6149 | 9000 | 6851 | 4476 | 4430.0 | | 580 | 2060 | 1109 | Neat | 1 | 9857 | 83 | 79 | 187 | 43 | 19 | 14 | 81.0 | | 445 | 2165 | 1112 | Dilution | 2 | 9860 | 89 | 270 | 872 | 1192 | 762 | 378 | 560.3 | | 175 | 2020 | 1113 | Neat | 1 | 9861 | 79 | 90 | 213 | 133 | o) | 41 | 112.5 | | 310 | 2075 | 1114 | Neat | 1 | 9862 | 86 | 111 | 95 | 68 | 34 | 25 | 77.1 | | 240 | 2210 | 1115 | Dilution | 20 | 9863 | 337 | 12% | 4865 | 7126 | 4817 | 3094 | 3343.e | | 235 | 2425 | 1110 | Neat | 1 | 966-1 | 49 | 96 | 271 | 257 | 152 | 105 | 155.5 | | 335 | 2355 | 1117 | Neat | . 1 | 9865 | 59 | 64 | 43 | 13 | 12 | 7 | 39.3 | | 450 | 2335 | 1118 | Dilution | 10 | 98 00 | 200 | 348 | 1144 | 1540 | 957 | 520 | 752.8 | | 510 | 2475 | 1119 | Dilution | 50 | 9867 | 760 | 3422 | 13100 | 23800 | 18220 | 11732 | 10575.9 | | 590 | 2620 | 1120 | Neat | 1 | 9868 | 87 | 128 | 300 | 140 | 80 | 58 | 1420 | | 682 | 2755 | 1121 | Dilution | 20 | 9869 | 31 6 | 1112 | 4674 | 7770 | 5191 | 3512 | 3308.6 | | 755 | 2812 | 1122 | Dilution | 10 | 9870 | 190 | 53n | 2404 | 3240 | 2272 | 1383 | 1563.7 | | 866 | 2680 | 1123 | Neat | 1 | 9871 | 88 | 95 | 114 | 32 | 17 | 12 | 08.4 | | 910 | 2685 | 1124 | Nest | 1 | 9872 | 37 | 60 | 110 | 90 | 55 | 35 | 67.4 | | 775 | 2562 | 1125 | Dilution | 200 | 9873 | 3276 | 18932 | 71973 | 126326 | 96703 | 78430 | 59888.5 | | 710 | 2410 | 112 6 | Dilution | 10 | 9874 | 175 | 621 | 2302 | 3108 | 2138 | 1182 | 1489.4 | | 530 | 2285 | 1127 | Dilution | 2 | 9875 | ól | 188 | 820 | 890 | 54o | 275 | 440.7 | | 710 | 2015 | 1128 | Dilution | 10 | 9876 | 212 | 535 | 1814 | 2380 | 1589 | 92 | 1174.8 | | 872 | 1980 | 1129 | Dilution | 10 | 9877 | 180 | 703 | 2283 | 2587 | 1623 | 1017 | 1354.2 | | | | | Dilution | 10 | 9878 | 404 | 447 | 1484 | 1800 | 1092 | 045 | 981.2 | | 965 | 1965 | 1130 | | | 9879 | 73 | 202 | 625 | 608 | 304 | 182 | 338.0 | | | 1965 | 1130 | Delution | , , | | | ا خان | احشا | OLD I | | 10.1 | الافادد | | 965
490 | 1965
2120 | 1131 | Dilution | 2 | | | | | | | | | | 965
490
1000 | 1965
2120
2245 | 1131
1132 | Dilution | 10 | 9880 | 15e | 450 | 1456 | 2139 | 1442 | 800 | 1013.3 | | 965
990
1000
1040 | 1965
2120
2245
2360 | 1131
1132
1133 | Dilution
Dilution | 10
20 | 9880
9881 | 15e
373 | 45e
1887 | 145e
8493 | 2139
13241 | 1442
9567 | 860
6322 | 1013.3
6063.1 | | 965
990
1000
1040
995 | 1965
2120
2245
2360
2420 | 1131
1132
1133
1134 | Dilution
Dilution
Dilution | 10
20
500 | 9880
9881
9882 | 15e
373
8445 | 456
1887
43407 | 145e
8493
1568e2 | 2139
13241
265858 | 1442
9567
1982oo | 860
6322
155895 | 1013.3
6063.1
126493.3 | | 965
990
1000
1040
995
1000 | 1965
2120
2245
2360
2420
2570 | 1131
1132
1133
1134
1135 | Dilution
Dilution
Dilution
Dilution | 10
20
500
10 | 9880
9881
9882
9883 | 156
373
8445
813 | 456
1887
43407
523 | 145e
8493
1588e2
1e2e | 2139
13241
205858
15ne | 1442
9567
1982pp
909 | 860
6322
155895
547 | 1013.3
6063.1
126493.3
1025.0 | | 965
990
1000
1040
995
1000
960 | 1965
2120
2245
2360
2420
2570
2700 | 1131
1132
1133
1134
1135
1136 | Dilution Dilution Dilution Dilution Neat | 10
20
500
10 | 9880
9881
9882
9883
9884 | 156
373
8445
813
39 | 456
1887
43407
523
322 | 145e
8493
1588e2
1e2e
1000 | 2139
13241
265858
15mg
1000 | 1442
9567
1982oo
900
1000 | 860
6322
155895
547
1000 | 1013.3
6063.1
126493.3
1025.0
672.2 | | 965
990
1000
1040
995
1000 | 1965
2120
2245
2360
2420
2570 | 1131
1132
1133
1134
1135 | Dilution
Dilution
Dilution
Dilution | 10
20
500
10 | 9880
9881
9882
9883 | 156
373
8445
813 | 456
1887
43407
523 | 145e
8493
1588e2
1e2e | 2139
13241
205858
15ne | 1442
9567
1982pp
909 | 860
6322
155895
547 | 1013.3
6063.1
126493.3
1025.0 | | deboot | Ctoo | ocosch | E: al | ١., | |---------|--------|--------|-------|-----| | adsheet | , otag | ecoacn | rie | C | | | Γ | - | | | | | C1
Pro | ect Geochen
lent: NYSER
ject Number: | DA | DATE RE | CEIVED: MA | ıy 17, 1997 | | | | | | - | <u> </u> | | | | | | | | · · · · · · · · · · · · · · · · · · · | | |----------------------------------|----------------------|----------------------|---------|----------------------------------|-------------------|----------------------|-----------|--|----------------------------|-----------------------|----------------------------|-----------------------|--------------------------|----------------------------|--------------------|------------------|-----------------------------------|--------------------------------|--|---|---|---|----------------------------|------------------------|----------------------------|----------------------------|---------------------------------------|------------------| | G.C.
FILE NO. | - | # ID# | Run Cod | .Client (D | X-Coord | Y-Coord | Notes | Methane | Interstitial
Ethane | Soil Gee De
Ethene | ta Report, S
Propune | Propene | iButane | nilutane | nPenlane | nHexane | SUMMA | TKN (through | \$(C) | \$ (C2 | \$ (C2+ | \$ (C)+ | | | | l - | | | | H06H0003 | | 1200 | | 980t | -20 | 190 | | 861.31 | : | • | | • | 0 | | 0 | | C1+ | C2+ | /CI+)
100
100 | /(2+) | /C1+) | /(2+) | C2/C1
ND | CS/C1 | ND ND | C3/C2 | ND ND | NCS/C2 | | HOSHIOUS | 3 | 1203 | | NO SAMPLE | 125
10 | 97
92
355 | | 176.73 | | 0 | 0 | • | • | • | • | | 176.73 | | | | | | ND | ND | ND | ND | ND | ND | | HOSHOUSE |] | 1205 | | NO SAMPLE | 32 | 411 | | 956.48 | 44.65 | - | 40.816 | - | - | 71.320 | • | - | 1113.274 | 156.794 | 85.915956 | 28.47685496 | 14.054044 | 71.52314502 | ND
0.0467 | ND | ND
00746 | ND | ND | ND | | H071-K1002 | 7343 | 1307 | | NO SAMPLE
9800 | 270
415 | 460 | | 2699.3 | 102.12 | 0 | 49.186 | 0 | 213.09 | 1544 | | 111.93 | 4506.536 | 1807.236 | 59 89744673 | 5.65061785 | 40.10255327 | 91.34938215 | ND
0 0378 | 0.0427
ND
0.0182 | ND
0.5720 | 0.9141
ND
0.4814 | 1.597\$
ND
15.1195 | ND
ND | | H07H0003 | | 1209
1210 | | 9010
9011 | 310
219 | 285
230
363 | | 844.78 | 63 301 | • | • | 0 | 0 | 91.562 | • | | 999.643 | 154 863 | 84 50816942 | 40 67548349 | 15.491E305& | 59.12451651 | ND
6.0749 | ND
ND | ND
0.1084 | ND
ND | ND
1.4465 | ND
ND | | 14071-10005 | 7343 | 1212 | | NOSAMPLE
901) | 35
15 | \$20
615 | | 1298 4
414 97 | 61.214 | | - | 156.08 | • | 121.18
87.04 | 0 | - | 1472.794
502.01 | 87.04 | 87 61578333
82 66169997 | 33.56141101 | 12:38421667 | 66.43858899 | ND
ND | ND
ND | 0.0939
ND
0.2098 | ND
ND
ND | 1.97%
ND
ND | ND
ND | | H071H0006 | | 1213 | | 9614
NO SAMPLE
9616 | -10
55
50 | 710
710
725 | | 1653.3 | 61.353
72.483 | • | 34.134 | 66.421 | 80.678 | 163.79 | 15.14 | 73.276 | 2921 909 | 1264 609 | 56.58287099 | 4.8362419 | 43.41712901 | 95.1637561 | 0.0371
ND | 0.0206
ND | 9.6561
ND | 6.5564
ND | 17.6797
ND | 0.2468
ND | | 1407140008
1407140009 | 7343 | 1216
1217 | | 9017 | 145
210 | 810 | = | 2023.7
1790 | 95 299
95.021 | 207.18 | 67.242 | 230.37 | 282 03 | 1264 5 | ÷ | | 1898.973
2118.999
3220.763 | 236 273
95.299
1430.763 | 87 55785364
95 50264063
55 5768928 | 30.67764831
100
6.64128161 | 12.44214636
4.497354366 | 69.32235169
0 | 9.04%
9.0471 | ND
ND | 0.0965
ND | ND ND | 2.2597
ND | ND
ND | | 1407140010
1407140012 | 7.143 | 1218
1219 | | 1915
1920 | 315
145 | 815
550 | | 837.7
1474.2 | 62 062 | - | • | | 265.53
49.091 | 0 | - | - | 837.7
1716.342 | 8
242.142 | 100
85 89197258 | 6136A/01
33 99658100 | 44.4231072
0
14.10802742 | #3.3567183#
#TNV/#
#6.10170891 | 9.0531
ND
9.0557 | 9.0376
ND
ND | 0.7087
ND
0.1086 | ND
ND | 13.3497
ND | ND
ND | | H07H0011 | 7343 | | | 9021
NOSAMPLE | 350
305 | 715
990 | | 1509.2 | 52 548 | • | • | • | • | 89.979 | | • | 1731.767 | 142.567 | 91.76754148 | 36 88651652 | 8
232458524 | 63.11346346 | 9.0001
ND | ND
ND | 9.0566
ND | ND
ND | 1.9500
1.7110
ND | ND
ND | | 1907110013
1907110014 | 7383 | 1223 | | 9023
9024
9025 | 215
150
110 | 915
910 | | 3419.2
3745.3
6085.5 | 105.32
224.13
239.29 | 84.648 | 34 515
60 847
87 364 | 249.16
0
236.06 | 36.183
1.26
501.86 | 229.92
178.94
4096.5 | • | \pm | 3788 955
4209 217
10508 658 | 369.755
463.917
4423.150 | 90.24124066
88.97854399
57.90939243 | 28.48372571
48.31252142
3.409935416 | 9.756759341
11.02145601 | 71.51627429
51.66747858 | 8.0308
9.0598 | 00162 | 0.0672
0.0470 | 0.3277
0.2715 | 2.183)
0.7964 | ND
ND | | H177-H1016 | 7343 | 1226 | | NO SAMPLE
9827 | 125
111 | 1010
1140 | | 3504 | 234.51 | | 296.43 | 96 091 | 309.9 | 11992 | - | - | 5236.14 | 1732.14 | 66 9195266 | 13.45420809 | 42 09060757
33 08047531 | 94.59006436 | 0.0393
ND
0.0675 | 90144
ND
90846 | 06732
ND | 0.3651
ND | 17.1194
ND | ND ND | | H07H0017 | 7343
7343 | 1226 | | 9626
9629 | 100
135 | 1245 | | 4479 B
3675.5 | 268 37
236 6 | • | 41.715
45.242 | • | 26.7H
0 | 187.42 | • | - | 4964 305
4157 342 | 504 505
281 842 | 99.87812744
93.22062029 | \$3.19(7)54)
83.94774377 | 10.12167256
6.779379709 | 44.80528439
14.05225423 | 0 0599
8 0611 | 0.0109 | 0.3422
0.0418
ND | 1.2554
0.1615
0.1912 | 5 0704
9 6964
ND | ND
ND | | H10H0004
H10H0005 | 7383
7383
7383 | 1229
1230
1231 | | 9630
9631 | 120 | 1362 | | 6533.7
3758.5 | 286.52
226.12 | -:- | 61 628 | -:- | - 6 | # 535
0 | -:- | - | 7003.383
3984 62 | 469.683
226.12 | 93 29348402
94 32518032 | 61.0028466
100 | 6.706515979
5.674819662 | 38.9971534 | 0.0439 | 0.0130
ND | 8.0151
ND | 8 2954
ND | 03439
ND | ND
ND | | HIGH MOUT | 7343
7343 | 1232 | | 9832
9833
9834 | 340
365
300 | 1380
1215
1245 | | 6608 5
6795.3 | 301 77
302 47
286 52 | - | 113.15
66.21 | - | 256.98
0
767.63 | 477.43
1135 | - | - | 7500 85
8298 98 | 892.35
1503.68 | 88 10334829
81 88114684 | 33.81744831
30.11531709 | 11.0964517)
18.11005316 | 66.18255160
79.86468291 | 0.0457
0.0445 | 0 0171
0 0097 | 0.0722
0.1670 | 6 3750
6 2186 | 3.7524 | ND
ND | | #10# KXXX9 | 7381
7383 | 1214 | | 9635
9616 | 380 | 1115 | | 4703.2
4779.4 | 298.13 | \dashv | 80 85
196 25 | 73.5%1 | 875.14
299.14 | 2702
3367.7
1129.7 | - | <u> </u> | 9545 982
8149 88
6448.11 | 3075 962
3746.68
1668 73 | 67 777 30731
55 45996303
74 13171407 | 9.314740916
7.957179006 | 32 22279279
44 34003797 | 90.68525108
92.04282191 | 0 0445
0 0634 | 0 0135
0 0172 | 0-1176
0-7140 | 0.3053
0.7712 | 9 4304 | ND
ND | | 15101 HILTO
F1101-10012 | 7:W3
7363 | 1236
1237 | | 9617
9616 | 510 | 1250 | | 4759.4 | 328 06 | - | 129.11 | - | 150 07 | 954 09 | - | - | 7905 121
6153 39 | 1371.423 | 82 42964449
77 34596327 | 20 42151816
23 92113065
24 18596977 | 25 87928993
17 57435551
21 65401673 | 79 57848184
76 07886115
75 81403023 | 0.0713
0.0510
0.0708 | 0013
001%
00271 | 8 2 MA | 9 3660 | 3.3150
2.9144 | ND
ND | | H10H0011 | 7383
7383 | 1236
1239 | | 9639
9640 | 440
440 | 1528
1632 | | 4594.5
4907 | 306 B
330 29 | -:- | 63.188 | 0 | 29.175 | 163 99
105.082 | - | - | 51303
5405.56 | 531.8
498.56 | 99 63413446 | \$7.69086123
66.24879653 | 10.36586554 | 42 30913877 | 8 0647
8 0673 | 00133 | 0 1949
0 0356
0 0214 | 0.3629
0.1992
0.1913 | 2.7517
0.5362
0.3182 | ND
ND | | H10H0014 | 7383
7383 | 1240
1241 | | 9612 | 435 | 1620
1710 | | 3291 8
4072 | 196 05
244 71 | | 31 &\
48 076 | ÷ | 0
84.526 | 64 345
121.29 | • | - | 3586 025
4486 076 | 292 225
414 074 | 91 85100494
90 76975067 | 67.08871589
59.09784677 | 8 148995057
9 230249331 | 32 91128411
40 90215323 | 0.0995
8.0601 | 0 0097 · | 0 0195
0.0296 | 0.1624
0.1965 | 8 3282
0 4954 | ND
ND | | H10H0016
H10H0017
H10H0018 | 7343
7343
7343 | 1243
1244 | = | 9643
9644
9645A | 450
360
250 | 1944
1775
1760 | | 5710.4
4319
4080.5 | 209 89 | - | 33 625
43 164 | - | 45.36 | 103 46 | : | _;_ | 6056 375
6741 334 | 345.975
422.334 | 94 28742441
91 09250688 | 60 66623311
65 62578433 | 5.712575592
8 907493123 | 39.33376689
34.37421567 | 0.0642 | 0009
0100 | 9 02 16 | 6 1602
0 1557 | 0 4862
0.3681 | ND
ND | | H10H0031 | 7383 | 1245 | | 96458
NOSAMPLE | 250
230 | 1760 | | 6664.1 | 276.97
331.41 | ᆲ | 46.753
61.393 | 00.561 | 0 | 205-01 | 136.21 | _ : | 4777.843
7384.263 | 774.163 | 85 40464808
90 19846749 | 40.00470357
45.76455853 | 14.59535197
9.801532512 | 59 99529643
54 23544147 | 0.0684
0.0497 | 0.0115
0.0092 | 8 0497
6 0497 | 0.1676
0.1852 | 0.8439 | 0.4003
ND | | H10H0019 | 7383
7383 | 1247 | | 9647
9618 | 340 | 1680 | | 4562.7
4201.3 | 319.39
293.66 | - | 139.79
67 627 | 9 | 136.18
45.56 | 1043 I
365 33 | • | - | 6064 98
4927 917 | 1502.28
726.617 | 75.23025432
45.25508451 | 21.26035093
40.41468889 | 34.76974368 | 78.73964907 | ND
0.0700 | ND
9 0306 | ND
0.2266 | ND
9 4377 | NI)
3 2659 | ND
ND | | H30H0021 | 7383 | 1349 | | 9619
NOSAMPLE | 740
725 | 1805
1692 | | 6710.4 | 314.07 | • | 47.603 | - | | 110.15 | ō | - | 7190 223 | 479.823 | 93.32672992 | 65.45538647 | 14.74491149
6.473270078 | 34.54461333 | 8 0448
ND | 9.0161
9.0071
ND | 9 0070
9 0176
NO | 0.2303
0.1516
MD | 1 2441
0 3742
ND | ND
ND | | H10H0024 | 7343
7383 | 1251
1252 | | 9652 | 730
595 | 1570
1580 | | 6212
6702 1 | 284 64
316 59 | -:- | 73 577
88 595 | 75.19
110.5 | 76.333
191.83 | 1107 9
2261 8 | 271 55
32 64 | 134.99 | \$420.207
9536.755 | 2188-207
2834-655 | 74.01243224
70.27652488 | 13.183.9627
11.1685549 | 25.98754776
29.72347512 | 86.81640373
86.8314451 | 9 0463
9 0472 | 00116 | 8 1778
0.3375 | 0.2551 | 3 8405
7 1443 | 6.9413
0.1602 | | H10H0025 | 7363
7363 | 1253 | | 9853
9854 | 470
310 | 1980
1905 | | 4350 6
4640.5 | 277.02
317.99 | - | 45 242
60 732 | • | 19.483 | 160.3
201.36 | 36.12 | • | 4869.282
5223.582 | \$18.642
\$63.082 | 89.34787511
88.83750652 | \$3.40844479
\$4.\$3606868 | 10.65212489
[1.16249348 | 46.59155321
45.46393132 | 0 0637
0 0685 | 0 0104
0 0131 | 8.0348 | 0.1633 | 0 5787
0 6427 | 0 1304
ND | | H10H0027 | 7363 | 1256 | | NOSAMPLE
9656
NOSAMPLE | 198
510
580 | 1650
2116
2060 | | 6104.1 | 263.17 | • | 15.0 | • | • | 94 499 | • | • | 6505.309 | 401.209 | 93.6325912 | 65.59424141 | 6.167408804 | 34.40575459 | ND
9931 | ND
90071 | ND
90155 | ND
0 1654 | ND
0 3591 | ND
ND | | H10H0028
H10H0029 | 7383
7383 | | | 9858 | 565
630 | 2075 | | 4486.7
4522.3 | 293.1
318.60 | - | 62 999
101.53 | -: | 30.873
172.05 | 271.73
757.54 | 13.96 | 38.969 | 5114.529
5753.029 | 627.829
1230.729 | 67.72459791 | 4. (0168611 | 12.27540309 | \$3.31931356 | ND
8 0653 | ND
0.0140 | ND
9 0606 | # 2149
ND | ND
0 9271 | 90
90 | | H10H0028 | | | | HIMASON
BINMASON | 445
445 | 2165
2165 | | - 1 | 3347 | | 10,2 | | | | 13.70 | 34.507 | 1/3346 | 120/2 | 78 6072867 | 25 894 10892 | 21.3927139 | 74.10559108 | \$ 4705
ND | ND ND | 0.1675
ND | 93186
ND | 2 377 I | 99(39
ND | | H10H0033 | 7383
7383 | 1262 | | 9861
9862 | 175
310 | 2075 | | 6715 | 295.47
257.86 | | 69.317
55.537 | 0 | Ø3.027 | 392.91
2386.8 | 625.77 | -;- | 5219.607
9419.967 | 757.707
3334.967 | 85 48344732
64 70922068 | 36.99528446
7.732010542 | 14.51655268
35.29077932 | 61.00471554
92.26798946 | 0 0642
0 0422 | 0.0091
0.0091 | 6:0863
8:3903 | 0 2346
0 2154 | 1.3298
9.2542 | ND
14344 | | | | | | NOSAMPLE
NOSAMPLE
NOSAMPLE | 240
235
335 | 2210
2425
2355 | | | | | | | | | | | | | | | | | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | H10H0034 | 7343 | 1266 | | 9866
NO SAMPLE | 459
510 | 2335 | | 5566.1 | 230.59 | | 23.554 | • | 28 475 | 207.16 | • | • | 6057.404 | 491 304 | 91.86919874 | 66.93428102 | 8.110801261 | \$3.06571898 | ND
0014
ND | ND
00% | ND
04072 | ND
0 2322 | ND
8 9964 | MD MD | | H10H0035 | 7343 | 1269 | | NOSAMITE
9669 | 590
682 | 2420
2755 | | 4937.5 | 189.76 | - | 35 514 | | • | • | • | • | 5162.774 | 225 274 | 95.43457057 | 84 23519803 | 43439438 | 15.76480197 | ND
0 0004 | ND
ND
00072 | ND
ND
ND | ND
ND
#1472 | ND
ND | ND
ND
ND | | H10H0036
H10H0037 | 7343
7383 | 1271 | | 9670 | 755
866 | 2612
2680 | | 6579.7
6387.2 | 327 92
303 86 | 41.691 | 106 26
83 684 | 181.23
130.84 | 177.15
144.47 | 1291.6
991.4 | 132 539
190.798 | 182.76
488.71 | 8435.779
8445.652 | 2041 079
2056 452 | 76 32372898
75 62708006 | 16 06601214
14 76157812 | 23 67627102
24 37291994 | 83 93398786
85 23642186 | 0 0496
0 0476 | 00161 | 0 1963
0 1952 | 0.3240
0.2754 | 3 9366
3 2477 | 8 4042
8 4279 | | HIGHOOM | 7343 | 1272 | | 9673
NO SAMPLE
9674 | 910
775
710 | 2562
2410 | | 7647.5
6478.9 | 321.9 | 130.49 | 72 536
57 048 | 541% | 42 163 | 519.54 | 675 629 | 11001 | 14141.267 | 6493.747 | 54 07938918 | 4 9570764 | 45 92061082 | 95.0429236 | 00421 | 8 0095 | 8 0629 | ● 1253 | 156 | 3 0909 | | H11H0003 | 7383
7383 | 1275 | | 9875
9876 | 530
710 | 2265
2015 | | 4352 16
6506 5 | 269 56
298 12 | 98.528 | 49.463
51.703 | 153.39 | 53 453
0
48.615 | 363 87
81 966
82 299 | 80 397
9 | 132.95 | 7415
775
4753 149
6940 622 | 936.875
400.969 | 87.36415866
91.56371913 | 32 29993329
67 22378918 | 8 436280874 | 47 70006671
32 77621082 | 8 0467
8 0619 | 9 00 14 | 8 0186 | 0 1895
0 1835 | 1 3024
0 3041 | 0.3457
ND | | HITHOOA
HITHOOA | 7383 | | | 9677
9678 | 965 | 1983
1965 | | 5284 005
9566 643 | 286.2 | 145 ž
176 57 | 68 221
98 739 | 342 26
991 65 | 135.12 | 57.721
830 67 | 94.762 | | 5696 147
10828 124 | 432 122
412 142
1261 481 | 93 77401622
92 76454768
88 34995794 | 68.98977404
69.64208549
22.77541057 | 6 225983781
7 235452315
11 65004206 | 30 55791451
27 22434941 | 0 0456
0 0542 | 00079
00129 | 00136
00100 | 9 1734
9 2364 | 0 2761 | ND
ND | | HEIHOOS
HEIHOO | 7363 | 1279 | | 9679
NOSAMPLE | 990
1000 | 2120
2245 | | 7717.5 | 264 41 | 165 65 | 86 886 | 692.49 | 205 48 | 1848.7 | 18 13 | | 9959 606 | 2242.106 | 77.48800505 | 12 86335258 | 22 51 199 195 | 97 1364-1742 | 0 0374 | 00113 | 0 0048
0 2395 | 0.3437
0.3013 | 2 8917
6 4100 | 9 1956
9 0638 | | HITHOUS
HITHOUS | 7343
7343
7343 | 1281
1282
1283 | | 9682 | 995 | 2120 | | 6367.3
36673.797 | 305 19
318 09 | 511.22 | 84 647
128 98 | 126.1 | 105 99
211.58 | 707.11
2111.6 | 35.475
430 97 | | 7499.722
44009.637 | 1132.422
5415.64 | 84 90048051
87 71629714 | 36 95030054
5 873327129 | 15 09951969
12 28370286 | 73 04979946
94 12667287 | 8 0479
9 0082 | 0 0133
0 0033 | 0 1111
0 0546 | 9 2774
9 4055 | 2 3170
6 6 364 | 0 1162
1 3000 | | | 1 | | | 9663
NO SAMPLE
NO SAMPLE | 96Q
935 | 2570
2700
2610 | | 10954 | 267 03 | 254 53 | 85 84 | 1065.6 | 130.3 | 1951.2 | 7134 | 5403.8 | 19653 23 | 8699.23 | 55 73434532 | 3.299487426 | 44 3676144 | 96.70051257 | 0 0362 | 0 au78 | å 1781 | 0 2991 | 4 7979 | 1 3600 | | L | L: | | | TACECOACI | - | . 1 | | | 14.4 | Cl.
Proj | ect Geochem
ient: NYSERI
ect Number: | DA
7383 | FREE SOII | LGAS / HI | EAD-SPAC | E GAS SPR | EADSHE | ET, REV. 8 | /11/98 C | GP | | | | | | | | | | | | |----------------------|--------------|--------------|-------------|--------------------|--------------|--------------|--|--------------------|----------------------|--------------------|----------------------|------------------|--------------------|-------------------|--------------------|-----------------|----------------|----------------|----------------|----------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------| | G.C.
FILE NO. | AB ID | ' | Run
Code | Client ID | X-Coord | Y-Coord. | Project Name
Methane | e:
Ethane | Ethene | Propane | Propene | iButane | n Butane | nPentane | ni lexane | Summation (| (through Co | %(C1
/C1+) | %(C2
/C2+) | %(C2+
/C1+) | % (C3+
/C2+) | C3/C1 | C3/C1 | nC4/C1 | c3/c2 | nC4/C2 | nC5/C2 | | | | | | | 672 | 100 | 3747.90 | 705.30 | 3603.50 | 895.02 | 3302.10 | 74.80 | 497.62 | 482.53 | 3592.60 | 9921 | 6173 | 37.78 | 11.43 | 62.22 | 88.57 | 0.1882 | 0.2388 | 0.1328 | 1.2690 | 0.7055 | 0.6841 | | G15H0003
G15H0004 | 7383
7383 | | | 0598-01
0598-02 | 695 | 267 | 7160.00 | 1398.20 | 6259.80 | 1543.80 | 4834.80 | 143.62 | 1139.20 | 1030.30 | 5593.60 | 17865 | 10705 | 40.08 | 13.06 | 59.92 | 86.94 | 0.1953 | 0.2156 | 0.1591 | 1.1041 | 0.8148 | 0.7369 | | G15H0005 | 7383 | 1003 | | 0598 03 | 552 | 118 | 3294.70 | 515.53 | 4321.60 | 638.59 | 2440.20 | 20.25 | 463.63 | 712.57 | 2625.80 | 8251 | 4956
3853 | 39.93
41.01 | 10.40 | 60.07
58.99 | 89.60
89.05 | 0.1565
0.1576 | 0.1938
0.1854 | 0.1407
0.1145 | 1.2387 | 0.8993 | 1.3822
1.0362 | | G15H0006 | 7383 | | -1 | 0598-04 | 585 | 275
310 | 2678.10
16761.00 | 421.94
1266.40 | 1958.80
11565.00 | 496.61
1252.80 | 1706.70
33197.00 | 64.32
256.97 | 306.71
441.00 | 437.21
351.26 | 2190.20
767.08 | 6531
20840 | 4079 | | 31.05 | 19.57 | 68.95 | 0.0756 | 0.0747 | 0.0263 | 0.9893 | 0.3482 | 0.2774 | | G15H0007
G15H0008 | | 1005 | | 0598-05
0598-06 | 420
310 | 322 | 1823.80 | 147.41 | 552.70 | 110.03 | 1591.70 | 0.00 | 81.24 | 31.61 | 288.28 | 2482 | 659 | 73.47 | 22.38 | 26.53 | 77.62 | 0.0608 | 0.0603 | 0.0445 | 0.7464 | 0.5511 | 0.2144 | | | | 1007 | | 0598-07 | 345 | 480 | 1397.50 | 98.55 | 883.99 | 136.94 | 475.18 | 0.00 | 149.56 | 41.49 | 221.35 | 2045 | 648 | 68.32 | 15.21 | 31.68 | 84.79 | 0.0705 | 0.0980 | 0.1070 | 1.3895 | 1.5176
0.8367 | 0.4210 | | G15110010 | 7383 | | | 0598-08 | 340 | 610 | 1178.70 | 100.48 | 270.92 | 92.85 | 254.46 | 0.00 | 84.07
129.50 | 32.81
90.76 | 461.68
295.06 | 1951
2212 | 772
882 | 60.43
60.13 | 13.02 | 39.57
39.87 | 86.98
81.38 | 0.0852
0.1235 | 0.0788 | 0.0713 | 0.9241
1.2318 | 0.8367 | 0.5526 | | G15H0011 | | 1009 | | 0596 09
0598-10 | 430
535 | , 700
605 | 1330.10
1236.50 | 164.25
115.11 | 1240.10
1282.30 | 202.33
126.47 | 923.47
444.20 | 0.00 | 102.31 | 82.76 | 537.69 | 2201 | 964 | 56.18 | 11.94 | 43.82 | 88.06 | 0.0931 | 0.1023 | 0.0827 | 1.0987 | 0.8888 | 0.7' | | G15H0012
G15H0013 | 7383
7383 | 1010 | -1 | 0598-10 | 620 | 605 | 1523.10 | 245.20 | 374.29 | 196.82 | 582.94 | 0.00 | 283.37 | 189.06 | 2018.00 | 4456 | 2932 | 34.18 | 8.36 | 65.82 | 91.64 | 0.1610 | 0.1292 | 0.1860 | 0.8027 | 1.1557 | 0.7 | | G15H0014 | 7383 | | | 0598-12 | 580 | 450 | 3554.50 | 561.77 | 1183.40 | 511.57 | 1388.10 | 52.49 | 378.65 | 261.53 | 2134.10 | 7402 | 3848 | 48.02 | 14.60 | 51.98 | 85.40 | 0.1580 | 0.1439 | 0.1065 | 0.9106 | 0.6740 | 0.46. | | G15110015 | 7383 | | | 0598-13 | 715 | 375 | 7246.00 | 547.41 | 2678.20 | 581.01 | 1925.10 | 60.95 | 397.57 | 327.60 | 2449.50 | 11549 | 4303
3921 | 62.74
40.05 | 12.72 | 37.26
59.95 | 87.28
89.82 | 0.0755 | 0.0802 | 0.0549 | 1.0614 | 0.7263
0.8186 | 0.5985
1.4833 | | G15110016 | 7383 | | | 0598 14 | 642 | 500 | 2619.60
4110.20 | 399.17
527.26 | 4747.30
6292.80 | 526.27
670.83 | 2370.00
3488.10 | 43.12
58.20 | 326.76
418.42 | 592.10
645.53 | 2902.40 | 6541
9275 | 5164 | 44.32 | 10.18 | 55.68 | 89.79 | 0.1324 | 0.1632 | 0.1018 | 1.2723 | 0.7936 | 1.2243 | | G16H0003 | 7383
7383 | | | 0598-15
0598-16 | 700
1200 | 610
972 | 27072.00 | 4551.00 | 5054.20 | 3426.40 | 3837.00 | 827.57 | 1677.90 | 864.54 | 3705.90 | 41298 | 14226 | 65.55 | 31.99 | 34.45 | 68.01 | 0.1681 | 0.1266 | 0.0620 | 0.7529 | 0.3687 | 0.1900 | | G16110005 | | 1017 | | 0598-17 | 1055 | 965 | 5501.70 | 635.19 | 6952.00 | 898.60 | 5358.40 | 69.01 | 498.30 | 528.48 | 4181.20 | 12243 | 6742 | 44.94 | 9.42 | 55.06 | 90.58 | 0.1155 | 0.1633 | 0.0906 | 1.4147 | 0.7845 | 0.8320 | | G16H0006 | 7383 | 1018 | | 0598-18 | 1035 | 815 | 4855.20 | 1113.50 | 3033.50 | 1282.60 | 3548.70 | 106.01 | 884.54 | 550.26 | 2159.40 | 10846 | 5990 | 44.77 | 18.59 | 55.23 | 81.41 | 0.2293 | 0.2642 | 0.1822 | 1.1519
0.9334 | 0.7944 | 0.4942 | | G16H0008 | 7383 | | | 0598-19 | 920 | 840 | 9966.60 | 1793.20 | 4364.70 | 1673.70
3105.40 | 6071.80
11206.00 | 346.56
254.32 | 1017.00
1564.50 | 484.71
838.13 | 2486.80
2841.50 | 17422
29331 | 7455
10641 | 57.21
63.72 | 24.05
21.53 | 42.79
36.28 | 75.95
78.47 | 0.1226 | 0.1662 | 0.0837 | 1.3554 | 0.6828 | 0.3658 | | G16H0009 | 7383 | | | 0598-20 | 780
745 | 810
917 | 18690.00
14610.00 | 2291.20 | 10608.00
5814.90 | 2324.30 | 7276.90 | 265.94 | 1259.10 | 688.17 | 1591.90 | 22733 | 8123 | 64.27 | 27.82 | 35.73 | 72.18 | 0.1547 | 0.1591 | 0.0862 | 1.0285 | 0.5571 | 0.3045 | | G16H0010 | 7383
7383 | | - | 0598-21
0598-22 | 590 | 935 | 5521.60 | 527.26 | 1367.20 | 557.68 | 1717.80 | 80.32 | 369.93 | 155.74 | 370.33 | 7503 | 1981 | 73.60 | 26.62 | 26.40 | 73.38 | 0.0955 | 0.1010 | 0.0670 | 1.0577 | 0.7016 | 0.2954 | | G16110012 | 7383 | | | 0598-23 | 450 | 935 | 8724.70 | 1786.60 | 5255.30 | 1749.90 | 6132.50 | 137.71 | 1091.70 | 823.90 | 3995.80 | 18173 | 9448 | 48.01 | 18.91 | 51.99 | 81.09 | 0.2048 | 0.2006 | 0.1251 | 0.9795
1.0736 | 0.6110 | 0.4612 | | G16H0013 | 7383 | | | 0598-24 | 200 | 1065 | 12328.00 | 1802.50 | 10248.00 | 1935.20 | 11117.00 | 158.09 | 1153.90 | 690.63
1200.10 | 3113.10
2729.90 | 21023
31367 | 8695
12342 | 58.64
60.65 | 20.73 | 41.36
39.35 | 79.27 | 0.1462
0.1519 | 0.1570 | 0.1022 | 1.2379 | 0.6732 | 0.4153 | | G16H0014 | 7383 | | | 0598-25 | 355 | 1210 | 19025.00
6664.90 | 2889.80
1271.60 | 11552.00
5559.20 | 3577.20
1532.10 | 16232.00
5219.00 | 349.62
176.95 | 1945.30
776.79 | 634.90 | 3182.10 | 14062 | 7397 | 47.40 | 17.19 | 52.60 | 82.81 | 0.1908 | 0.2299 | 0.1165 | 1.2049 | 0.6109 | 0.4993 | | G16H0015
G16H0016 | 7383
7383 | | | 0598-26
0598-27 | 540
725 | 1210 | 4817.80 | 1124.90 | 3476.40 | 1160.30 | 4059.50 | 123.84 | 772.71 | 597.75 | 2853.70 | 11327 | 6509 | 42.53 | 17.28 | 57.47 | 82.72 | 0.2335 | 0.2406 | 0.1604 | 1.0315 | 0.6869 | 0.5314 | | G16H0017 | 7383 | | _ | 0598-28 | 805 | 1230 | 3261.40 | 603.17 | 4424.70 | 715.56 | 2935.60 | 55.65 | 489.12 | 590.27 | 2746.30 | 8406 | 5144 | 38.80 | 11.72 | | 88.28 | 0.1849 | 0.2194 | 0.1500 | 1.1863 | 0.8109 | 0.9786
0.6351 | | G16H0018 | 7383 | | | 0598-29 | 755 | 1135 | 7488.90 | 936.92 | 4764.20 | 1171.10 | 4251.80 | 73.90 | 708.70 | 595.01 | 2064.40 | 12965 | 5476 | 57.76
58.20 | 17.11 | 42.24
41.80 | 82.89
85.70 | 0.1251 | 0.1564
0.1520 | 0.0946 | 1.2499 | 0.7564 | 1.3995 | | G16H0019 | 7383 | | | 0598-30 | 715 | 1040 | 10501.00 | 1078.50 | 17018.00
2323.50 | 1595.70
1062.80 | 7200.10
2976.60 | 148.21 | 939.72
573.30 | 1509.40
734.00 | | 18041
11079 | 7540
5154 | 53.48 | 14.30
22.77 | | 77.23 | 0.1980 | 0.1320 | 0.0968 | 0.9057 | 0.4886 | 0.6255 | | G16H0020 | 7383 | | | 0598-31 | 805
880 |
1080
1228 | 5925.30
7844.70 | 1173.40
1885.70 | 4432.90 | 2101.10 | 5376.20 | 187.14 | 1170.60 | 662.68 | 2889.80 | 16555 | 8710 | 47.39 | 21.65 | | 78.35 | 0.2404 | 0.2678 | 0.1492 | 1.1142 | 0.6208 | 0.3514 | | G16H0021
G16H0022 | 7383
7383 | | | 0598-33 | 1255 | 1250 | 5561.20 | 709.31 | 5118.30 | 854.33 | 4473.90 | 71.66 | 495.47 | 691.77 | 1248.20 | 9560 | 3999 | 58.17 | 17.74 | 41.83 | 82.26 | 0.1275 | 0.1536 | 0.0891 | 1.2045 | 0.6985 | 0.9753 | | G16H0023 | 7383 | | \neg | 0598-34 | 1100 | 1280 | 30518.00 | 2262.10 | 26860.00 | | 75148.00 | 3350.10 | 768.75 | 658.16 | 1553.30 | 38766 | 8248 | 78.72 | 27.43 | | 72.57 | 0.0741 | 0.0985 | 0.0252 | 1.3287
0.8364 | 0.3398 | 0.2910
0.1638 | | G16H0024 | 7383 | | | 0598-35 | 935 | 1310 | 345840.00 | | 123150.00 | | | | 7872.90
1630.20 | 3827.90
894.43 | 5497.70
1289.70 | 405965
62483 | 60125
11882 | 85.19
80.98 | 38.88 | 14.81 | 65.30 | 0.0676 | 0.0780 | 0.0322 | 0.9567 | 0.3954 | 0.2169 | | G16H0025 | 7383 | | | 0598-36 | 980 | 1420 | 50601.00
53754.00 | 4123.10
4364.20 | 28091.00
30522.00 | | | | 1248.70 | | 2304.10 | 65408 | 11654 | 82.18 | 37.45 | | 62.55 | 0.0812 | 0.0568 | 0.0232 | 0.7000 | 0.2861 | 0.1563 | | G16H0026
G16H0027 | 7383
7383 | | | 0598-37
0598-38 | 1245
1130 | 1485
1496 | 55018.00 | 4244.80 | 44356.00 | | 115160.00 | | 1872.40 | | | 68836 | 13818 | 79.93 | 30.72 | | 69.28 | 0.0772 | 0.0937 | 0.0340 | 1.2149 | 0.4411 | 0.21' | | G16H0028 | 7383 | | | 0598-39 | 1173 | 1010 | 54022.00 | 5087.90 | 28989.00 | | 62744.00 | 4220.90 | 1597.10 | | | 69411 | 15389 | 77.83 | 33.06 | | 66.94 | 0.0942 | 0.0830 | 0.0296 | 0.8809 | 0.3139 | 0.21 | | G16H0029 | 7383 | | | 0598-40 | 1230 | 1940 | 709670.00 | 74822.00 | | | | | | | | 882468 | 172798 | 80.42 | 43.30 | | 56.70
60.01 | 0.1054 | 0.0870 | 0.0371 | 0.8253 | 0.3516 | 0.058u
0.1375 | | G16H0030 | 7383 | | | 0598-41 | 1155 | 1835 | 41916.00 | 3998.60 | 32419.00
11669.00 | | 74346.00
21002.00 | | 1394.40
559.25 | 549.80
375.15 | 1107.00
643.08 | 51915
23439 | 9999
4318 | 80.74
81.58 | 39.99
35.86 | | 64.14 | 0.0954 | 0.0624 | 0.0292 | 0.7701 | 0.3612 | 0.2423 | | G16H0031 | 1 | 1042 | _ | 0598-42 | 1096 | 1730
1626 | 19121.00
24291.00 | 1548.40
1445.30 | 17325.00 | | | | 487.42 | . 440.81 | 347.69 | 28878 | 4587 | 84.12 | | | 68.49 | 0.0595 | 0.0768 | 0.0201 | 1.2908 | 0.3372 | 0.3050 | | G16H0032
G16H0033 | 7383
7383 | | - | 0598-43 | 1071
845 | 1330 | 10783.00 | 1434.20 | 5750.00 | 1390.50 | 10683.00 | | 797.19 | 713.20 | 1900.90 | | 6236 | 63.36 | | | 77.00 | 0.1330 | 0.1290 | 0.0739 | 0.9695 | 0.5558 | 0.4973 | | G16H0034 | 7383 | | | 0598-45 | 860 | 1470 | 5952.20 | 842.65 | 3453.90 | 1046.00 | 4287.70 | 94.39 | 657.37 | 73.89 | 1470.90 | | 4091 | 59.27 | | | 79.40 | 0.1416 | 0.1757 | 0.1104 | 1.2413 | 0.7801
1.3102 | 0.0877 | | G16H0035 | 7383 | 1016 | | 0598-46 | 770 | 1540 | 6080,70 | 875.36 | 4779.10 | 1234.30 | | 857.74 | 1146.90 | | 2605.00 | | 6538
4443 | 48.19
54.11 | 13.39 | | 86.61
83.85 | 0.1440 | 0.2030 | 0.0747 | 0.8527 | 0.5453 | 0.5701 | | G16H0036 | | 1047 | | 0598-47 | 940 | 1577 | 5239.90 | 717.46
71.50 | 2911.60
852.11 | 79.54 | 3378.40 | 0.00 | 391.23
68.43 | 409.04
144.82 | 2313.70
354.10 | 1061 | 718 | 32.32 | 9.95 | 67.68 | 90.05 | 0.1305 | 0.2319 | 0.1995 | 1.1125 | 0.9572 | 2.0255 | | G16H0037
G16H0038 | | 1048
1049 | | 0598-48
0598-49 | 855
975 | 1725
1680 | 343.04
1636.40 | 306.97 | 1008.80 | | 788.61 | 31.50 | 250.85 | 530.66 | 1163.70 | | 2575 | 38.86 | 11.92 | | 88.08 | 0.1876 | 0.1971 | 0.1533 | 1.0505 | 08172 | 1.7287 | | G16H0038 | | 1050 | | 0598-19 | 9/3 | 1733 | 1178.30 | 261.42 | 305.05 | 185.98 | 363.44 | 0.00 | 166.10 | | 609.73 | 2597 | 1418 | 45.38 | 18.43 | 54.62 | 81.57 | 0.2219 | 0.1578 | 0.1410 | 0.7114 | 0.6354 | 3.4678 | | G16H0040 | | | | 0598-51 | 870 | 1960 | 578.60 | 175.57 | 1515.20 | | 664.70 | 0.00 | 213.91 | 608.84 | | | 2570 | 18.37 | 6.83 | | | 0.3034 | 0.3316 | 0.3697 | 1.0928 | 0.9298 | 3.0854 | | | | | | 0598-52 | 1020 | 1915 | 1845.30 | 467.91 | 2403.30 | | 1380.90 | 48.62 | 435.08 | 1443.70 | 1761.70 | 19303 | 4631
3911 | 28.49
79.74 | | | | 0.2536 | 0.2832 | 0.0369 | 0.8414 | 0.3438 | 0.1035 | | | 1 | | | 0598 53 | 1060 | 2000 | 15392
19878 | 1652
2700 | 4618
10052 | 1390
2270 | 7435
15311 | 683
1729 | 568
1228 | 502 | 269 | 26847 | 6969 | 74.04 | | | | 0.1358 | 0.1142 | 0.0618 | 0.8407 | 0.4548 | 0.1859 | | | | | | 0598-54 | 1110 | 2075
2165 | 19878
5268 | 599 | 2869 | 622 | 3059 | 111 | 274 | 136 | 51 | 6950 | 1682 | 75.80 | 35.61 | 24.20 | 64.39 | 0 1137 | 0.1181 | 0.0520 | 1.0384 | 0.4574 | 0.2270 | | | 1 | | - | 0598 56 | 1165 | 2250 | 44393 | 3747 | 11484 | 3233 | 26791 | 6591 | 902 | 486 | 641 | 53402 | 9009 | 83.13 | | | | 0.0844 | 0 0728 | 0.0203 | 0.8628 | 0.2407 | 0.1297 | | | | _ | | 0598-57 | 1240 | 2250 | 37398 | 3039 | 18763 | 2299 | 37277 | 401 | 1308 | 503 | 446 | 44993 | 7595 | 83.12 | | | | 0.0813 | 0.0615 | 0.0350 | 0.7565
1.3818 | 0.4304 | 0.1655 | | | 1 | | | 0598-58 | 1312 | 2246 | 3916 | 495 | 2432 | 684 | 2088 | 56
883 | 488
931 | 315
468 | 348 | 5896
28828 | 1982
5985 | 79.24 | | | | | 0.1/4/ | 0.1248 | 0.9776 | 0.4344 | 0 2184 | | | | | | 0598-59 | 1270 | 2135 | 22843
13256 | 2143
1234 | 8806
994 | 2095
786 | 1685 | 382 | 360 | 149 | 187 | 15972 | 2716 | | | 17.00 | | 0.0931 | 0.0593 | 0 0272 | 0.6370 | 0.2917 | 0.1207 | | L | 1 | | L | W20-00 | 1 6430 | Allor | .5450 | #### Scanned UV Fluoresecence Intensity Spreadsheet, North Tioga Study Area | | | | | DIRECT | CEOCUE | MCAL C | VNCUPON | IOUS SC | ANNED | IIV EI IIC | DESCEN | ICE SPEC | TRA DA | TA | | | | | | | | | | | |------------------------------|--------------|--------------|--------------|----------------------|--|--|--------------------|-----------------------
----------------|-----------------|-----------------|---------------------|-----------------|--|----------------|------------------|------------------|------------------|----------------|----------------|------------------|------------------|----------------|------------------| | | 1.45 | | | | SPIKE RUN DILU CLIENT (Relative Fluorescence Intensity Units) SPIKE RUN DILU CLIENT (Relative Fluorescence Intensity Units) CODE CODE FCTR ID# 290nm 320nm 350nm 410nm 440nm 480nm Total 320/290 350/290 410/290 480/290 350/320 410/290 480/290 350/290 480 | | | | | | | | | | | | | | 7383 | | | | | | | | | | | | | | s, D99 solvent | extracted | FLUO | RESCENCE | SPREADSH | EET, REV 06 | 24-98 | | | | | | | . " | | | | | | SPECTRUM | | X-Coord. | Y-Coord. | | | | CLIENT | | | | Inits) | | | | FLUORESC | ENCE INT | ENSITY RA | 1106 | | | | | | | | FILE | LAB ID# | A-Coord. | | CODE | CODE | FCTR | ID# | 290nm | 320nm | 350nm | 410nm | | | | | | | | | 410/320 | 480/320 | 410/350
1.837 | 480/350 | 480/440
0.642 | | F01F0006.SPM
F01F0008.SPM | 1001 | 672 | 100
267 | Dilution
Dilution | 0 | 100
200 | 0598-01
0598-02 | 2033
3664 | 9548
16155 | 23366
64826 | 42915
134044 | 34135
114328 | 21920
84861 | 19956.2
60709.9 | 4.696 | 11.493 | 21.109
36.581 | 10.782
23.159 | 2.447
4.013 | 8.298 | 16.791
31.200 | 2.068 | 1.309 | 0.742 | | F01F0011.SPM | 1003 | 552 | 118 | Dilution | 0 | 10 | 0598-03 | 223 | 741 | 3157 | 4079 | 3037 | 1869 | 2013.7 | 3.326 | 14.170 | 18.310 | 8.389 | 4.260 | 5.505 | 13.631 | 1.292 | 0.592 | 0.615 | | F01F0014 SPM
F01F0016 SPM | 1004 | 585
420 | 275
310 | Dilution
Dilution | 0 | 30
10 | 0598-04
0598-05 | 661
252 | 3065
842 | 11781
2586 | 21528
3887 | 17181
2811 | 11570
1754 | 9720.7
1864.0 | 4.640
3.347 | 17.833 | 32.588
15.455 | 17.514
6.973 | 3.843 | 7.023
4.618 | 26.009
11.177 | 1.827 | 0.982 | 0.673 | | F01F0017.SPM | 1006 | 310 | 322 | Nest | 0 | 1 | 0598-06 | 61 | 181 | 358 | 286 | 169 | 90 | 195.2 | 2.952 | 5.849 | 4.674 | 1.475 | 1.981 | 1.583 | 2.763 | 0.799 | 0.252 | 0.534 | | F01F0021.5PM | 1007 | 345 | 480 | Disulion | 0 | 20 | 0598-07 | 314 | 682 | 6720 | 427
243 | 243 | 200
73 | 1668.6 | 2.174 | 21.428
11.336 | 1.363
5.287 | 0.638
1.587 | 9.857
4.491 | 2.095 | 0.774
3.326 | 0.064 | 0.030 | 0.824 | | F01F0022.SPM
F01F0023.SPM | 1008 | 430 | 640
700 | Nest
Nest | 0 | | 0598-08
0598-09 | 46
123 | 237 | 521
360 | 361 | 153
233 | 104 | 237.2 | 1.923 | 2.922 | 2.930 | 0.842 | 1.519 | 1.523 | 1.886 | 1.003 | 0.288 | 0.447 | | F01F0024.SPM | 1010 | 535 | 605 | Neat | 0 | _1 | 0598-10 | 38 | 132 | 551 | 764 | 501 | 267 | 350.4 | 3.452 | 14.382 | 19.936 | 6.972 | 4.166 | 5.775 | 13.061 | 1.386 | 0.485
1.220 | 0.533 | | F01F0026.SPM
F01F0028.SPM | 1011 | 620
580 | 605
450 | Dilution
Dilution | 0 | 200 | 0598-11 | 3210
3877 | 14114 | 52466
64276 | 100215 | \$2041
96596 | 64009
73148 | 46802.7
55550.6 | 4.397 | 16.345 | 31.219
30.756 | 19.941
18.866 | 3.717 | 7.100
6.932 | 25.558
24.913 | 1.855 | 1.138 | 0.757 | | F01F0031.5PM | 1013 | 715 | 375 | Dilution | 0 | 100 | 0598-13 | 1487 | 7701 | 23497 | 57407 | 52603 | 30122 | 24042.8 | 5.181 | 15.807 | 38.619 | 20.264 | 3.051 | 7.454 | 35.387 | 2.443 | 1.282 | 0.573 | | F01F0033.5PM | 1014 | 642
700 | 500
640 | Dilution
Dilution | 0 | 50
50 | 0598-14
0598-15 | 820
775 | 3067
2992 | 10486
8570 | 17533
14687 | 13453
11373 | 8622
7328 | 8105.4
6870.5 | 3.741 | 12.793
11.066 | 21.390
18.963 | 10.519
9.462 | 3.419
2.864 | 5.717
4.909 | 16.413
14.684 | 1.672 | 0.822 | 0.641 | | F01F0034.SPM
F01F0035.SPM | 1015 | 1200 | 972 | Dilution | Ö | 100 | 0598-16 | 1702 | 6998 | 27318 | 51590 | 40928 | 29270 | 23375.5 | 4.113 | 16.055 | 30.320 | 17.202 | 3.904 | 7.372 | 24.054 | 1.889 | 1.071 | 0.715 | | F01F0037.SPM | 1017 | 1055 | 965 | Dilution | 0 | 10 | 0598-17 | 197 | 610 | 1690 | 2558 | 1838 | 1104 | 1231.7
66863.6 | 3.100 | 8.588 | 12.996
34.211 | 5.609
22.162 | 2.770
4.189 | 4.192 | 9.341
28.918 | 1.513 | 0.653
1.285 | 0.600 | | F01F0039.SPM
F01F0040.SPM | 1018 | 1035 | 815
840 | Dilution
Dilution | 0 | 200 | 0598-18
0598-19 | 4246
81 | 17482
371 | 73227
1142 | 145262
1236 | 122787
784 | 94101
356 | 637.4 | 4.117 | 17.246
14.070 | 15.219 | 4.389 | 3.076 | 3.328 | 9.658 | 1.082 | 0.312 | 0.454 | | F01F0042.5PM | 1020 | 780 | 810 | Dilution | 0 | 200 | 0598-20 | 4065 | 14530 | 53430 | 110409 | 95260 | 69109 | 50308.7 | 3.574 | 13.143 | 27.159 | 17.000 | 3.677 | 7.599 | 23.432 | 2.066 | 1.293 | 0.725 | | F01F0044.SPM
F01H0045.SPM | 1021 | 745
590 | 947
935 | Dilution
Dilution | 0 | 100 | 0598-21
0598-22 | 1479
1574 | 8129
4713 | 25379
11341 | 58053
17756 | 47733
14498 | 30331
11013 | 24674.0
9279.3 | 5.496
2.994 | 17.159
7.205 | 39.251
11.281 | 20.508 | 3.122
2.406 | 7.142
3.767 | 32.274
9.211 | 2.287
1.566 | 0.971 | 0.635 | | F01F0046.5PM | 1023 | 450 | 935 | Dilution | 0 | 50 | 0598-23 | 1130 | 4962 | 20007 | 37799 | 29638 | 20670 | 16913.4 | 4.393 | 17.713 | 33.465 | 18.300 | 4.032 | 7.617 | 26.240 | 1.889 | 1.033 | 0.697 | | F01F0048.5PM | 1024 | 200 | 1065 | Dilution | 0 | 50 | 0598-24 | 848 | 2606
9864 | 7205
11759 | 10354 | 8151
15183 | 5537
10801 | 5309.7
10623.0 | 3.075
5.561 | 8.501
6.630 | 12.217 | 6.533 | 2.765
1.192 | 1.918 | 9.618
8.561 | 1.437 | 0.768 | 0.679 | | F01F0050.SPM
F01F0051.SPM | 1025 | 355
540 | 1210
1210 | Dilution | - 0 | 20
100 | 0598-26 | 1774
2345 | 9950 | 31527 | 65668 | 51712 | 39356 | 29768.9 | 4.244 | 13.447 | 28.008 | 16.786 | 3.168 | 6.600 | 22.056 | 2.083 | 1.248 | 0.761 | | F01F0053.SPM | 1027 | 725 | 1220 | Dilution | 0 | 100 | 0598-27 | 2477 | 10592 | 35830 | 68111 | 53312 | 36981 | 30798.2 | 4.276 | 14.465 | 27.497 | 14.930 | 3.383 | 6.430 | 21.523
25.976 | 1.901 | 0.934 | 0.694 | | FO1F0051.SPM
F01F0055.SPM | 1028
1029 | 805
755 | 1230 | Dilution
Dilution | 0 | 10
50 | 0598-28 | 293
947 | 1406
3306 | 5175
5097 | 9840
7488 | 7602
5131 | 4835
2995 | 4309.8
3966.4 | 4.804
3.493 | 17.681
5.385 | 33.621
7.911 | 16.521
3.164 | 3.681
1.542 | 2.265 | 5.421 | 1.469 | 0.588 | 0.584 | | F01F0056 5PM | 1030 | 715 | 1040 | Dilution | Ö | 50 | 0598-30 | 638 | 2133 | 5727 | 10534 | 8888 | 7250 | 5256.2 | 3.345 | 8.978 | 16.515 | 11.366 | 2.684 | 4.938 | 13.935 | 1.839 | 1.266 | 0.816 | | F01F0057.SPM | 1031 | 805 | 1090 | Dilution
Dilution | 0 | 100
200 | 0598-31
0598-32 | 1945
3794 | 9941
14954 | 36397
60021 | 88489
145601 | 75451
135918 | 58448
109044 | 39043.7
66682.9 | 5.112
3.942 | 15.820 | 45.503
38.377 | 30.055
28.741 | 3.661
4.014 | 8.901
9.736 | 38.799
35.824 | 2.431 | 1.606 | 0.775 | | F02F0004.SPM
F02F0006.SPM | 1032 | 880
1255 | 1228
1250 | Dilution | 0 | 50 | 0598-33 | 616 | 1659 | 1235 | 8419 | 7323 | 5967 | 4179.1 | 2.695 | 6.880 | 13.678 | 9.695 | 2.553 | 5.075 | 11.897 | 1.988 | 1.409 | 0.815 | | F02F0008.5PM | 1034 | 1100 | 1280 | Dilution | 0 | 20 | 0598-34 | 717 | 3484 | 5706 | 10648 | 9343 | 7539 | 5618.9
20165.7 | 4.857
3.749 | 7.953
12.413 | 14.843
27.499 | 10.509 | 1.638
3.311 | 3.056
7.335 | 13.024
24.921 | 1.866
2.215 | 1.321 | 0.807 | | F02F0009.5PM
F02F0011.5PM | 1035 | 935 | 1310 | Dilution
Dilution | 0 | 200 | 0598-35 | 1554
2978 | 5826
11513 | 19291
45338 | 100230 | 38727
92219 | 31424
72696 | 46550.8 | 3.867 | 15.227 | 33.662 | 24.415 | 3.938 | 8.706 | 30.972 | 2.211 | 1.603 | 0.788 | | F02F0012.5PM | 1037 | 1245 | 1485 | Dilution | 0 | 50 | 0598-37 | 728 | 2652 | 7229 | 15235 | 11585 | 11071 | 7382.9 | 3.642 | 9.930 | 20.927 | 15.207 | 2.726 | 5.745 | 15.914 | 2.107 | 1.531 | 0.956 | | F02F0015.5PM | 1038 | 1130 | 1496 | Dilution | 0 | 10
100 | 0598-38
0598-39 | 138
1589 | 276
7584 | 1005
27227 | 641
56563 | 578
45671 | 418
32565 |
495.4
25105.4 | 2.000
4.774 | 7.278
17.140 | 4.641
35.607 | 3.025 | 3.638 | 2.320
7.458 | 28.751 | 2.077 | 0.416
1.196 | 0.713 | | F02F0017.SPM
F02F0018.SPM | 1039 | 1473 | 1010 | Dilution
Dilution | - 0 | 10 | 0598-40 | 214 | 759 | 3395 | 5792 | 4573 | 3102 | 2652.4 | 3.544 | 15.851 | 27.043 | 14.483 | 4.473 | 7.631 | 21.349 | 1.706 | 0.914 | 0.678 | | F02F0019.5PM | 1041 | 1155 | 1835 | Dilution | 0 | 2 | 0598-41 | 65 | 243 | 1220 | 1946 | 1520 | 962 | 887.2
6102.6 | 3.706 | 18.630
9.341 | 29.712
16.959 | 14.697 | 5.028
3.040 | 8.018
5.516 | 23.213 | 1.595 | 0.789 | 0.633 | | F02F0022.5PM
F02F0024.5PM | 1042 | 1096 | 1730
1626 | Dilution
Neat | 0 | 50 | 0598-42
0598-43 | 748
67 | 2299
102 | 6987
385 | 12685
461 | 10349
346 | 7794
194 | 241.7 | 1.536 | 5.788 | 6.929 | 2.915 | 3.769 | 4.512 | 5.196 | 1.197 | 0.504 | 0.561 | | F02F0026.5PM | 1044 | 845 | 1330 | Dilution | Ö | 200 | 0598-44 | 3957 | 15062 | 57064 | 114898 | 95815 | 75348 | 53265.9 | 3.806 | 14.420 | 29.034 | 19.040 | 3.789 | 7.628 | 24.212 | 2.013 | 1.320 | 0.786 | | F03F0004.5PM | 1045 | 860 | 1470 | Dilution | 0 | 50 | 0598-45 | 723
64 | 3748
293 | 16340
854 | 27286
1003 | 20076
547 | 13857 | 12390.7
494.8 | 5.183
4.552 | 22.600
13.268 | 37.740
15.594 | 19.166 | 4.360
2.915 | 7.281 | 27.768
8.503 | 1.670 | 0.848 | 0.690 | | F03F0006.SPM
F03F0007.SPM | 1046 | 770
940 | 1540
1577 | Dilution | 0 | 50 | 0598-46 | 583 | 2679 | 8779 | 15695 | 12053 | 7096 | 6966.3 | 4.599 | 15.067 | 26.938 | 12.180 | 3.276 | 5.858 | 20.687 | 1.788 | 0.808 | 0.589 | | F03F0008.SPM | 1048 | 855 | 1725 | Dilution | ō | 10 | 0598-48 | 184 | 662 | 2483 | 3630 | 2397 | 1432 | 1678.2 | 3.596 | 13.492 | 19.728 | 7.783
19.251 | 3.750 | 5.483
6.467 | 13.025 | 1.462 | 0.577 | 0.598 | | F03F0010.SPM
F03F0012.SPM | 1049
1050 | 975
990 | 1680
1733 | Dilution . | 0 0 | 400 | 0598-49 | 2714
5427 | 14525
30598 | 56590
124613 | 93933
229542 | 69436
188270 | 52238
145914 | 43999.9
107218.8 | 5.353
5.639 | 22.963 | 34.617
42.299 | 26.888 | 4.073 | 7.502 | 34.693 | 1.842 | 1.171 | 0.775 | | F03F0013.SPM | 1051 | 870 | 1960 | Dilution | 0 | 10 | 0598-51 | 225 | 1256 | 4993 | 7912 | 5612 | 3809 | 3638.8 | 5.582 | 22.196 | 35.173 | 16.935 | 3.976 | 6.301 | 24.948 | 1.585 | 0.763 | 0.679 | | F03F0014.5PM | 1052 | 1020 | 1915 | Dilution | 0 | 50 | 0598-52
0598-53 | 752 | 3719 | 15188 | 27010 | 20778 | 14823 | 12296.4 | 4.946 | 20.196 | 35.917 | 19.712 | 4.084 | 7.262 | 27.630 | 1.778 | 0.976 | 0.713 | | | | 1060 | 2000 | | | | 0598-54 | | - | | - | | | | | | | | <u> </u> | | | | | | | | | 1142 | 2165 | | | | 0598-55 | | | | | | | | | | · | | | 1 | | | | | | | | 1165
1240 | 2250 | 1 | | | 0598-56
0598-57 | | | | 1 | 1 | | 1 | 1 | 1 | | 1 | 1 | | | | 1312 | 2246 | 1 | | | 0598-58 | | | | | | | | | | | | | 1 | | | | | | | | 1270 | 2135 | | | | 0598-59 | | | | ļ | | | | - | - | - | I | | | 1 | | | - | | | | 1235 | 2054 | | | _ | 0598-60 | | | | | | | | 1 | | | | | 1 | | | | | | | | | | | | | | | I and or | 1 2000 | Larmana | 1 24212 | 1354100 | 19029.8 | 3.948 | 13.634 | 23.572 | 13.362 | 3.487 | 5.689 | 18.807 | 1.682 | 0.949 | 0.644 | | | i | | | | MEAN
MAXIMUM | | | 1368.5874
5426.667 | 30598.29 | 124612.8 | | 34242.451
188270 | 145913.7 | 19029.8 | 5.639 | 22.963 | 45.503 | 30.055 | 9.857 | 9.736 | 38.799 | 2.443 | 1.817 | 0.956 | | l | | | 38.3075 | 102.1275 | 357.82 | 243.1317 | | 72.98167 | 195.2 | 1.536 | 2 922 | 1.363 | 0 638 | 1.192 | 0.627 | 0.774
10.232 | 0.064 | 0.030 | 0.447 | | | | | | | | <u></u> | | | | STANDARD | DEVIATE | ON . | 1392.9492 | 6473.3475 | 25709.160 | 51124.195 | 43321.46 | 33578.307 | 23536.0 | 1.025 | 5.097 | 11.899 | 7.832 | 1.266 | 2.248 | 10.252 | 0.501 | 9.423 | J.112 | ## North Tioga Study Area | <u> </u> | | | | | | | | | |----------------------|--------------|------|---------|------------------------|-------------|--------------|-------|------------------------|------------------|------------------|----------------|------------------|-----------------|---------|---------|---------|-----------|--------------|----------|-----------|-----------|-----------|--------------|--------------|--------------|--------------|--------------|--------------| | | | | | 100 | | | | rt Geoche
ent: NYSE | : 1 | - | | - T | | ct Number | | DATE REC | CEIVED: M | fav 17, 199 | 7 | 100 | | 11 | 1. | | | | | | ort, N. Ti | | Area | 1 | - | | | | | | | | | | | | | | | | | 7 | | | G.C. | LAB | ID# | Run Cod | Client ID | X-Coord. | Y-Coord. | Notes | Methane | Ethane | Ethene | Propane | Propene | iButane | nButane | nPentan | nHexane | | | X(CI | %(C2 | %(C2+ | %(C3+ | | | | | , , | | | FILE NO. | | | | | | | | | | | | | | | | | C1+ | CZ+ | /CI+) | /C2+) | /CI+) | /C2+) | C2/C1 | C3/C1 | nC4/C1 | C3/C2 | nC4/C2 | nCS/C2 | | G15H0003 | 7383 | 1001 | | 0598-01 | 672 | 100 | G15H0004 | 7383 | 1002 | | 0598-02 | 695 | 267 | | | | | | | | | | | | | | | | | | | | | | | | G15H0005 | 7383 | 1003 | | 0598-03 | 552 | 118 | | 5439.90 | 279.96 | 139.44 | 54.69 | 119.25 | 31.98 | 246.01 | 117.39 | 225.93 | 6363.881 | 923.979 | 85.48089 | 30.29939 | 14.51911 | 69.70061 | 0.0515 | 0.0101 | 0.0452 | 0.1953 | 0.8787 | 0.4193 | | G15H0006 | 7383 | 1004 | | NOSAMPLE | 585 | 275 | | | | | | | | | | | | | | | 113111 | | → ND | ND | ND | ND | ND | ND | | G15H0007 | 7383 | 1005 | | NOSAMPLE | 420 | 310 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G15H0008
G15H0009 | 7383 | 1006 | | 0598-06 | 310 | 322 | | 7282.13 | 318.09 | 247.33 | 79.89 | 1912.10 | 124.39 | 1753.00 | 351.35 | 1910.80 | 11695.261 | 4413.127 | | 7.207814 | 37.73432 | | 0.0437 | 0.0110 | 0.2407 | 0.2511 | 5.5110 | 1.10 | | G15H0010 | 7383 | 1007 | | 0598-07
0598-08 | 345
340 | 480
640 | | 6082.68
5774.10 | 225.32
186.61 | 272.54
126.94 | 54.97
51.35 | 734.26
152.27 | 161.79
75.10 | 1427.40 | 119.75 | 726.76 | 8636.876 | 2554.199 | 70.42682 | 8.821552 | | 91.17845 | 0.0370 | 0.0090 | 0.2347 | 0.2440 | 6.3350 | 0.5 | | G15H0011 | 7383 | 1009 | | NOSAMPLE | 430 | 700 | | 3//4.10 | 100.01 | 120.5 | 31.33 | 132.27 | 73.10 | 67.34 | 0.00 | 0.00 | 6079.405 | 305.305 | 94.97804 | 61.12248 | 5.021955 | 38.87752 | 0.0323 | 0.0089 | 0.0117 | 0.2752 | 0.3609 | NL. | | G15H0012 | 7383 | 1010 | | 0594-10 | 535 | 605 | | 4802.90 | 283.33 | 107.94 | 61.91 | 526.07 | 54.28 | 852.95 | 13.47 | 76.70 | 6091.259 | 1288.359 | 78.84905 | 21 90154 | 21.15095 | 78 00846 | ND
0.0590 | 0.0129 | ND
0.1776 | ND
0.2185 | ND
3.0104 | ND
0.0475 | | G15H0013 | 7383 | 1011 | | NOSAMPLE | 620 | 605 | | | | | | | | | | | | | | 41.271.51 | -1.,555 | , 0.50010 | ND | ND | ND | ND ND | ND | ND | | G15110014 | 7383 | 1012 | | NOSAMPLE | 580 | 450 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G15H0015 | 7383 | 1013 | | NO SAMPLE | 715 | 375 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G15H0016 | 7383 | 1014 | | NOSAMPLE | 642 | 500 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0003 | 7383
7383 | 1015 | | NO SAMPLE
0598-16 | 700
1200 | 640 | | 2222 45 | 200.00 | | - 0.00 | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0005 | 7383 | 1017 | | NO SAMPLE | 1055 | 972
965 | | 3372.40 | 202.36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3574.76 | 202.36 | 94.3392 | 100 | 5.6608 | 0 | 0.0600 | ND | ND | ND | ND | ND | | G16H0006 | 7383 | 1018 | | NOSAMPLE | 1035 | 815 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0008 | 7383 | 1019 | | 0598-19 | 920 | 840 | _ | 4134.80 | 300.61 | 0.00 | 104.12 | 103.97 | 145.76 | 550.03 | 0.00 | 0.00 | 5089.56 | 954.76 | 81.24081 | 31,4854 | 18.75919 | 68.5146 | ND
0.0727 | ND
0.0252 | ND
0.1330 | ND
0.3464 | ND
1.8297 | ND
ND | | G16H0009 | 7383 | 1020 | | NOSAMPLE | 780 | 810 | | 1101.00 | 000.01 | | 101.12 | 100.57 | 145.70 | 330.03 | 0.00 | 0.00 | 3.05.30 | 757.70 | 91.24001 | 31.4031 | 10.73919 | 06.3140 | ND | ND | ND | ND ND | ND | ND | | G16H0010 | 7383 | 1021 | | 0598-21 | 745 | 947 | | 4393.80 | 312.32 | 65.92 | 76.80 | 176.07 | 40.07 | 313.89 | 42.45 | 36.37 | 5175.623 | 781.823 | 84.89413 | 39.94766 | 15.10587 | 60.05234 | 0.0711 | 0.0175 | 0.0714 | 0.2459 | 1.0050 | 0.1359 | | G16H0011 | 7383 | 1022 | | NO SAMPLE | 590 | 935 | | | | | | | | | | | | | | | 11.11.11. | | ND | ND | ND | ND | ND | ND | | G16H0012 | 7383 | 1023 | | NOSAMPLE | 450 | 935 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0013 | 7383
7383 | 1024 | | 0598-24 | 200 | 1065 | | 4104.90 |
293.92 | 0.00 | 48.15 | 0.00 | 0.00 | 63.02 | 0.00 | 0.00 | 4509.993 | 405.093 | 91.01788 | 72.55618 | 8.98212 | 27.44382 | 0.0716 | 0.0117 | 0.0154 | 0.1638 | 0.2144 | ND | | G16H0015 | 7383 | 1025 | | NO SAMPLE | 355 | 1210 | | | | | | | | | | | | | | | | | ND | ND_ | ND | ND | ND | ND | | G16110016 | 7383 | 1027 | | NO SAMPLE
0598-27 | 725 | 1210
1220 | | 1714.00 | 91.67 | 0.00 | 0.00 | 56.22 | 0.00 | 100.00 | | | 2005 105 | 311.00 | 24 (222) | 20.45414 | | | ND | ND | ND | ND | ND | ND | | G16H0017 | 7383 | 1028 | | NO SAMPLE | 805 | 1230 | | 1/11.00 | 91.07 | 0.00 | 0.00 | 30.22 | 0.00 | 189.30 | 30.22 | 0.00 | 2025.195 | 311.195 | 84.63383 | 29.45838 | 15.36617 | 70.54162 | 0.0535
ND | ND
ND | 0.1104
ND | ND
ND | 2.0649
ND | 0.3297
ND | | G16H0018 | 7383 | 1029 | | NOSAMPLE | 755 | 1135 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0019 | 7383 | 1030 | | 0596-30 | 715 | 1040 | | 2392.50 | 153.99 | 0.00 | 37.38 | 0.00 | 0.00 | 84.68 | 0.00 | 64.51 | 2733.063 | 340.563 | 87.53915 | 45.2163 | 12.46085 | 54.7837 | 0.0644 | 0.0156 | 0.0354 | 0.2428 | 0.5499 | ND | | G16H0020 | 7383 | 1031 | | 0596-31 | 805 | 1060 | | 3362.50 | 266.02 | 0.00 | 84.69 | 248.44 | 174.67 | 2597.00 | 18.95 | 1376.90 | 7706.057 | 4343.557 | 43.63451 | 6.124474 | 56.36549 | 93.87553 | 0.0791 | 0.0252 | 0.7723 | 0.3183 | 9.7624 | 0.0712 | | G16H0021 | 7383 | 1032 | | 0598-32 | 880 | 1228 | | 3709.40 | 279.20 | 211.43 | 79.92 | 274.63 | 45.65 | 134.82 | 21.27 | 0.00 | 4224.607 | 515.207 | 87.80462 | 54.19181 | 12.19538 | 45.80619 | 0.0753 | 0.0215 | 0.0363 | 0.2862 | 0.4829 | 0.0762 | | G16H0022
G16H0023 | 7383 | 1033 | | NOSAMPLE | 1255 | 1250 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0024 | 7383
7383 | 1034 | | 0598-34 | 1100 | 1280 | | 3289.80 | 244.16 | 0.00 | 53.41 | 0.00 | 37.73 | 183.48 | 28.57 | 0.00 | 3799.414 | 509.614 | 86.58704 | 47.91077 | 13.41296 | 52.08923 | 0.0742 | 0.0162 | 0.0558 | 0.2187 | 0.7515 | 0.1170 | | G16H0025 | 7383 | 1036 | | NO SAMPLE
NO SAMPLE | 935 | 1310
1420 | | — | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | NI NI | | G16H0026 | 7383 | 1037 | | 0594-37 | 1245 | 1485 | | 3068.80 | 160.24 | 0.00 | 44.09 | 74.83 | 46.97 | 347.37 | 0.00 | 0.00 | 3640.5 | 551.7 | 84.84549 | 29.04477 | 15 15454 | 20.05522 | ND
0.0519 | ND
0.0143 | ND
0.1125 | ND | ND | NL
NB | | G16H0027 | 7383 | 1038 | | NOSAMPLE | 1130 | 1496 | | | 100.21 | ¥ | 71.07 | /4.83 | 10.7/ | 31/.3/ | 0.00 | 0.00 | 3040.3 | 351.7 | 91.01349 | 47.041// | 12.1243] | /0.50523 | 0.0519
ND | ND | 0.1125
ND | 0.2751
ND | 2.1678
ND | ND
ND | | G16H0028 | 7383 | 1039 | | NOSAMPLE | 1473 | 1010 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0029 | 7383 | 1040 | | 0596-40 | 1230 | 1940 | | 2739.70 | 147.61 | 0.00 | 40.44 | 133.70 | 23.03 | 245.03 | 132.27 | 0.00 | 3305.045 | 565.345 | 82.89448 | 26.10972 | 17.10552 | 73.89028 | 0.0539 | 0.0148 | 0.0894 | 0.2739 | 1.6600 | 0.8961 | | G16H0030 | 7383 | 1041 | | 0598-41 | 1155 | 1835 | | 2735.90 | 207.63 | 0.00 | 138.57 | 116.49 | 574.33 | 1008.90 | 0.00 | 55.11 | 4146.113 | 1410.213 | 65.98711 | 14.72331 | 34.01289 | 85.27669 | 0.0759 | 0.0506 | 0.3688 | 0 6674 | 4.8591 | ND | | G16H0031 | 7383 | 1042 | | 0598-42 | 1096 | 1730 | | 2260.20 | 154.54 | 0.00 | 43.30 | 0.00 | 18.97 | 130.49 | 0.00 | 0.00 | 2588.526 | 328.326 | 87.3161 | 47.06907 | 12.6839 | 52.93093 | 0.0684 | 0.0192 | 0.0577 | 0.2802 | 0.8444 | ND | | G16H0032 | 7383 | 1043 | | NO SAMPLE | 1071 | 1626 | | - | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0034 | 7383
7383 | 1044 | | 0598-44 | 845 | 1330 | | 6794.20 | 206.95 | 556.69 | 51.78 | 556.25 | 0.00 | 0.00 | 46.16 | 0.00 | 7099.097 | 304.897 | 95.70513 | 67.87538 | 4.29487 | 32.12462 | 0.0305 | 0.0076 | ND | 0.2502 | ND | 0.2231 | | G16110035 | 7383 | 1046 | | NO SAMPLE
NO SAMPLE | 860 | 1470 | | | | | | | - | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0036 | 7383 | 1047 | | 0598-47 | 770
940 | 1540
1577 | | 2049.50 | 129.69 | 0.00 | 0.00 | 0.00 | 0.00 | 133.00 | - 000 | | 2312.19 | 262.69 | 88.63891 | 40.2600 | 11 96100 | E0 (2000 | ND | ND | ND
0.0649 | ND | ND | ND | | G16H0037 | 7383 | 1048 | | NOSAMPLE | 855 | 1725 | | 2017.30 | 127.07 | <u> </u> | 0.00 | 0.00 | V.00 | 133.00 | 0.00 | 0.00 | 2012.19 | 202.09 | 90.03691 | 49.36998 | 11.36109 | 30.63002 | 0.0633
ND | ND
ND | ND | ND
ND | 1.0255
ND | ND
ND | | G16H0038 | 7383 | 1049 | | NOSAMPLE | 975 | 1680 | | | | | | | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | G16H0039 | 7383 | 1050 | | 0598-50 | 990 | 1733 | | 2651.90 | 196.36 | 0.00 | 47.87 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2896.134 | 244.234 | 91.5669 | 80.39831 | 8.433104 | 19.60169 | 0.0740 | 0.0181 | ND | 0.2438 | ND | ND | | G16H0040 | 7383 | 1051 | | NO SAMPLE | 870 | 1960 | | | | | | | | | | | | | | | | 1,111111 | ND | ND | ND | ND | ND | ND | | G16H0041 | 7383 | 1052 | | 0598-52 | 1020 | 1915 | | NR | | | | | | | | | | | | | | | | | | | - | # Gas Composition Stagecoach Field, NY | Compound | %Composition | |-----------|--------------| | Methane | 98.7312384% | | Ethane | 1.1908819% | | Ethene | 0.0000000% | | Propane | 0.0776618% | | Propene | 0.0000000% | | I-Butane | 0.0000635% | | N-Butane | 0.0001272% | | I-Pentane | 0.0000183% | | N-Pentane | 0.0000065% | | I-Hexane | 0.0000019% | | N-Hexane | 0.0000004% | ## Correlation Matrix -- TD Soil Samples | Variable | Methane | Ethane | Ethene | Propane | I-Butane | N-Butane | Pentane | |----------|---------|--------|--------|---------|----------|----------|---------| | Ethane | 1.00 | -0.26 | 0.55 | -0.39 | 0.03 | 0.64 | 0.13 | | Ethene | | 1.00 | 0.13 | -0.51 | 0.01 | -0.06 | -0.04 | | Propane | | | 1.00 | -0.45 | 0.78 | 0.26 | -0.08 | | Propene | | | | 1.00 | -0.06 | -0.76 | -0.59 | | I-Butane | | | | | 1.00 | -0.13 | -0.20 | | N-Butane | | | | | | 1.00 | 0.72 | | Pentane | | | | | | | 1.00 | Methane in Soils Stagecoach Field, New York DIRECT GEOCHEMICAL Figure 5 Percent Methane (Gas Dryness) Stagecoach Field, New York DIRECT GEOCHEMICAL ### Stage Coach Field, Surface Soils Thermally Desorbed Gases DIRECT GEOCHEMICAL Gas Probability Thermal Desorption Stagecoach Field, New York ## Stage Coach Field, Surface Soils Thermally Desorbed Gases Sample 9804: 99% Gas Probability Sample 9883: 11% Gas Probability Figure 10 Figure 15 Pyron Consulting 924 Hale Street Pottstown, Pa 19464 Stagecoach Field Area Tioga County, NY Figure 17 Paleogeomorphic Map Showing Projected Paleogeomorphic Thin Pyron Consulting 924 Hale Street Pottstown, Pa 19464 Northern Tioga County Prospect Areaa Tioga County, NY