Feasibility of GasWell Restimulation
In New York State

prepared for

Gas Technology Institute
Chicago, Illinois

and

New York State Energy Research and Development Authority
Albany, New Y ork

LYl Grail— W

Ronald J. MacDonald P.G. CharlesM. Boyer Il
Senior Petroleum Geol ogist Principal Consultant
Project Leader Project Auditor

i

Joseph H. Frantz, Jr. P.E.
Operations Manager Eastern U.S.
Division Manager

July 2001

Holditch - Reservoir Technologies Consulting Services sullllllllllﬂl'gﬂl'




Table of Contents

[l EXECULIVE SUMMAIY....cocoiiiiiiiiiiiieiecectieeteee et 1|
[ P INrOdUCTION . cc.iiiiiiieieeeeee ettt nte e nee e neeans 4|
[ B CONCIUSIONS ..ot 6|
[ B RECOMMENAALIONS. ... e eeeeee e, 7|
[ B DISCUSSION Lottt ettt et e e et eneeeneesneenteeneeeneeeneenns 8|
| 5.1 Database CONSIIUCTION ........ueeiiiiiieeeiieie et e e et e e e e s e e e anreeennns 8
B.2 Production Indicator and Recovery FACLOrS............uuiiiiiiiiiiiiiiieiee e 10
5.3 StiMUIAtioN CaNIALES..........cuviiiiiiiee e 14
B REFEIEINCES ...t 17|
7 APPENAICES ..ot te ettt eneenan 18|

Page i




List of Tables

[Table 1 — H-RT list of restimulation candidates...................eceeeeeiuvireeeeseiiiirirraaaans 1]
[ [Table 2 — IS list of top 25 restimulation candidates...............cccuuuveeeeeeeeeeneaaaann.. 2|
| [Table 3 — ARI list of restimulation candidates ............cc.ooeeveeevieeeeeiiiieiiireeaeene. 3]
[ [Table 4 — Examples of data used for thisS StUAY ..............ccooueeeeeeeeeeeeeeeeeaaaannn 8|
[Table 5 — H-RT list of restimulation candidates................cccuuueeeevveeeeeeeeesseeennnnen.. 14|
[Table 6 — IS list of top 25 restimulation candidates.................ccccccevvvveeeeeeervnnnnn... 15|
[Table 7 — ARI list of restimulation candidates ................cceeeeeeeeeeeeeeeeeeeeen.... 16|

Page ii




List of Figures

[Figure T = Study area Iocation Map ................c.occooevoeeeereersesecseenscnsenseseneensinnennenes 5|
[ IFigure 2 — Study wells versus year drilled.................ooccuuuueeieeeeeeeeeeasieeeeenaaannn 9|
[Figure 3 — Color-filled contour map of 5-year cumulative gas production.............. 10
[Figure 4 — Study well locations and 80-acre maximum drainage boundaries......... 11|
[Figure 5 — Date of first production versus 5-year cumulative production............... 12|
[Figure 6 — Example of underperforming Well...............ccccuuvvveeeiieciunnnneeeiiicivnnnnnn. 12|
[Figure 7 — Example of depletion based on 5-year cumulative production ............. 13|

Page iii




Executive Summary

Schlumberger Holditch — Reservoir Technologies Consulting Services (H-RT), with subcontract
support provided by Advanced Resources International, Inc. (ARI), and Intelligent Solutions, Inc.
(1S), performed a study to develop a restimulation candidate selection process for various wells
operated by Belden & Blake Corporation located in Chautaugua County, New Y ork State.

One hundred fifty nine wells producing from the Lower Silurian Medina Group’s Grimsby and
Whirlpool sandstones located in Chautauqua County, NY have been evaluated using three different
methods to quantify the restimulation potential of these wells. H-RT performed a Moving Domain
Analysisl] (MDAL), IS applied a virtual intelligence neura network, and ARI utilized type curve
analysis techniques. These differing approaches and their results are discussed throughout this

report.

The primary objective of this study isto evaluate production data and determine which, if any wells
have incremental production potential via a rework or additional lease compression. Most of the
wellsin this study have approximately twenty-three years of production history.

Utilizing our MDAL and recovery factor calculations, we have determined that the following
wells are good candidates for recompletion, Table 1. These candidate wells have 5-year
cumulative production values significantly lower than expected based upon the median production
value of the wells within its domain. Thislist is sorted by the descending difference in production
volume between a well’ s actua 5-year cum versus the median of 5-year cumulative production for
al wells within its domain. Weélls with higher differences should have higher incremental
recoverable reserves through restimulation. Recovery factors were aso considered based upon
EUR’s from decline curves, 80-acre maximum drainage, and net pay (height, porosity, and
extrapolated Sw).

Table 1 — H-RT list of restimulation candidates

Syr Domain Recovery
Cumulative Median Difference Factor (%)

Well Name Gas (Mscf) (Mscf) (Mscf)
MOTRYNCZUK, PAUL  #382 44,580 89,907 45,327 23%
SHEPARD, GEORGE  #297 20,063 64,631 44,568 40%
SUPPO, PETER #073 8,613 40,065 31,452 20%
STARR, HERB  #151 8,106 35,658 27,552 2%
CRANDALL, RICHARD  #327 15,300 41,900 26,600 6%
DEAN, LUTHER  #017 6,242 28,133 21,891 1%

RAYNOR, WARD #386 10,515 31,959 21,444
BROWN, CHARLES #028 37,280 57,661 20,381 92%
BERGER, CARL  #288 6,694 23,222 16,528 6%
LONGHOUSE, ARTHUR  #064 11,892 28,250 16,358 25%
BEARDSLEY, JOHN #134 12,446 25,525 13,079 9%
JOHNSTON, CHARLES  #304 17,100 29,362 12,262 7%
BARKER, JAMES  #338 5,280 16,392 11,112 86%
DARBY, LEON #336 7,174 17,892 10,718 14%
YONKERS, FRANK  #137 12,680 22,448 9,768 17%
HOWARD, VELMA  #320 3,959 11,901 7,942 27%
WELLMAN, DONALD  #120 5,115 11,023 5,908 5%

Page 1




Intelligent Solution’slist of recompletion candidates shown below in Table 2.

Table 2 — IS list of top 25 restimulation candidates

Final Ranking
Ranking
Rank Well Name Last Month Reservoir Three-Input
Rate Quality System
1 Suess, George #430 1 2 4
2 Wills, William #325 13 3 2
3 Winchell, Francis #303 16 5 3
4 Palmer, Lonnie #074 17 8 1
5 Martin, David #300 5 1 21
6 Augustinians of the Assum #103 6 14 14
7 McLarney, Jane #102 19 13 5
8 Suppo, Jeter #073 15 18 9
9 Scholl, Mary A. #115 14 21 12
10 Smith, Warren #069 23 11 13
11 Colt, Alvin #024 11 20 22
12 Smith, M. #1 #245 6 8
13 Cranston, Claude #311 4 11
14 Village of Brocton #299 17 7
15 Dubois, Florence #079 16 10
16 Cornell, Gordon #423 12 19
17 Chilcott, Eugene #365 20 18
18 Barber #2 24 15
19 Van Dette, Albert #356 22 17
20 Bemus, Cecile #214 23 24
21 Crandall, Richard #326 25 25
22 Straight, Frank #140 16
23 Miller, Morris #433 20
24 Josephson, Walfred #329 21
25 Zook, Marvin #276 23
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ARI'slist of candidate wellsis shown below in Table 3.

a) Rankings by Incremental Recovery Due to Restimulation

Table 3 — ARI list of restimulation candidates

TC Results Restim Inc.

Well Well 5Yr P 5Yr 5Yr
No. Name Formation k Xf A Cum 5/01 Cum Cum

(md) (ft) (acres) | (Bcf) | (psia) (Bcf) (MMcf)

16 Bemus, Cecile, #214 Comingled | 0.150 - 74 0.010 380 0.021 10.5

115 Raynor, Ward, #323 Comingled | 0.056 5 62 0.013 518 0.022 9.4
150 Wellman, Donald #120 Comingled | 0.007 - 21 0.003 716 0.011 7.6
146 Van Dette, Albert #356 Comingled | 0.070 10 110 0.012 579 0.020 7.5
117 Reno, Norman #277 Comingled | 0.055 7 131 0.011 467 0.019 7.3
87 Marrano, Anthony #389 Comingled | 0.023 25 73 0.007 570 0.015 7.2

110 Powell, Irving #077 Comingled | 0.066 15 137 0.009 406 0.017 7.2
63 Furmanek, Aloysious #144 | Comingled | 0.090 9 293 0.013 426 0.019 6.1

34 Chilcott, Eugene #365 Comingled | 0.325 20 104 0.022 283 0.028 6.0

149 Webster Castle Inn #015 Grimsby | 0.140 15 104 0.015 365 0.021 6.0

b) Rankings by Incremental Recovery Due to Added Lease Compression

TC Results Restim Inc.

Well Well 5Yr P 5Yr 5Yr
No. Name Formation k Xf A Cum 5/01 Cum Cum

(md) (ft) (acres) | (Bcf) | (psia) (Bcf) (MMcf)

154 Wills, William #325 Comingled | 0.150 15 62 0.002 366 0.028 25.4
97 Miller, Morris #433 Comingled | 0.210 35 109 0.005 279 0.027 21.3

94 Mikula, Joseph #152 Grimsby | 0.075 25 259 0.012 471 0.027 15.0

140 Sutton, David #315 Comingled | 0.140 25 268 0.017 440 0.032 14.7
112 Przybylski, Leonard #113 | Comingled | 0.110 15 255 0.009 390 0.021 125
75 Josephson, Walfred #329 Grimsby | 0.090 15 109 0.005 423 0.017 11.3

145 Van Dette, Albert #339 Comingled | 0.065 13 77 0.008 462 0.019 10.7
153 Wilkens, Roy #343 Comingled | 0.100 17 133 0.013 407 0.021 7.8
52 Dennison, Wilber #062 Comingled | 0.090 20 133 0.008 359 0.016 7.7

82 Lanford, C. #240 Comingled | 0.105 14 43 0.004 303 0.011 7.4
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Introduction

Historical development of the study area and its relatively shallow reservoirs began in the late
1880's and the wells were produced naturally, or with only minimal nitroglycerine stimulation.
Production is from the lower Silurian Medina group’s Grimsby and the Whirlpool formations,
which consists of interbedded sandstones, siltstones, and shales. The Medina group is further
subdivided into the Grimsby sandstone, Cabot Head shale, and Whirlpool sandstone that
unconformably overlies the Upper Ordovician Queenston shale. These formations provide a
stratigraphic play with production primarily related to porosity and permeability variations within
the reservoir. Local variations within the structural setting may influence production in some
areas, but to a considerably lesser extent. All of the wells were stimulated similarly (e.g. proppant
amounts, nitrogen volumes, fluid rate, etc.) in the Lower Silurian Medina group Grimsby and
Whirlpool sandstones, with perforations ranging from 2,300 to 3,400 feet deep. Typical treatments
utilized gelled water with nitrogen assist, averaging 623 barrels of fluid, 5,470 pounds of proppant,
and 18 perforations.

In 1996, the Gas Research Ingtitute (GRI) [currently the Gas Technology Institute (GTI)]
authorized an evaluation to study potential benefits from the restimulation of existing natural gas
wells. This analysis estimated that over one trillion cubic feet of natural gas reserves and up to
$500 million in benefits could potentially be derived from successful recompletion programs
conducted in the tight gas reservoirs of South Texas, Mid-Continent, and Rocky Mountain regions
of the United States. Case studies have subsequently shown that restimulation benefits may also be
significant in low permeability unconventional reservoirs similar to the Grimsby and Whirlpool
sandstonesin New York State.

Belden & Blake Corporation (B&B) worked with Advanced Resources International, Inc. (ARI) in
1998 to determine the magnitude of reserve and production enhancement opportunities that existed
in their wells situated in this area of New York, Fig. 1. The New York State Energy Research and
Development Authority (NY SERDA) and GTI jointly sponsored a feasibility study modeled after
the 1996 GRI evaluation. Methodology used included production data analysis, artificial neura
networks, type curve construction, and reservoir modeling. These tools have helped to identify
restimulation candidates for Belden & Blake's Chautaugqua County, NY Medina Group field. Our
evaluation applies and enhances the restimulation feasibility methods developed by GRI in 1996 to
these formations, and was requested jointly by NY SERDA, GTI, and B&B.
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Figure 1 — Study area location map

NEW YORK

Chautauqua County
Belden & Blake
40,000 acres
159 Wells
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3  Conclusions
Based on the worked performed by H-RT and our subcontractors, we conclude that:
1) A significant number of recompletion candidates are available for Belden & Blake' sreview.

2) Varying methodologies of identifying recompletion candidates often identify a core group of the
same wells, thus providing added confidence in the selection of these wells for recompletion.
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Recommendations
Based on the results of this study, H-RT makes the following recommendations:

1) Belden & Blake should review the three lists of recompletion candidates, determine what
restimulation options are available, and estimate their associated costs.

2) Perform economic analyses on the selected recompletion candidates based upon expected
stimulation costs, anticipated production increase and additional operating costs, if any.

3) Upon finalization and execution of an actual recompletion, estimate future production rates and
reserves.
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5.1

Discussion

Work performed on this project was undertaken by H-RT as the lead contractor, with IS and ARI

providing sub-contract support.

Discussion of our approach and result obtained are presented

below. The approach and results of IS and ARI are presented in Appendices 1 and 2 to this report.

Database Construction

In 2000, Belden & Blake provided ARI with production data, completion methods, and well
information. ARI estimated net pay thickness, created a preliminary database, and presented it to
H-RT for use in the study. We organized and uploaded this information into various Microsoft
ACCESS™ databases and EXCEL™ spreadsheets, and then reviewed and quality checked it for

integrity. Table 4 shows examples of information used for this study.

Table 4 — Examples of data used for this study

Well Permit Number Latitude and Longitude

KB Elevation Well Number
Well Name Operator
Spud Date Completion Date
Date of First Production Total Depth
Completed Intervals and Names Net Pay
Stimulation Type (by stage and total) Cumulative Production
Average Sand (by stage and total) Best 12-Month Gas Production

Injection Rate by Stage Shut-In Pressure

Production Data by Month Number of Stimulation Stages

Best Production Month Average Treating Pressure by Stage

Average Flowing Pressure (best 6- and

Average Sand Concentration (by stage
12-months)

and total)
Sand and Volume of Fluid Used in
Stimulation (by stage and total)

Fig. 2 shows that initia drilling dates for these wells are between 1973 and 1996, though 154 wells

have online dates between 1974 and 1977 (12 wells in 1974, 44 wells in 1975, 80 wells in 1976,
and 18 wellsin 1977).
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Well Count

Figure 2 — Study wells versus year drilled
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5.2 Production Indicator and Recovery Factors

To investigate the usefulness of different primary production indicators in identifying potentially
recoverable incremental reserves, H-RT evaluated 5-year cumulative gas, 10-year cumulative gas,
and highest twelve-month (g;,) volumes relative to dates of first production (DOFP). Early in our
study it became apparent that the 5-year cumulative was the most helpful in recognizing
restimulation candidates with the use of MDA. Fig. 3isacolor-filled contour map of these 5-year
values. Note that the areasin red are regions of higher volumes.

Figure 3 — Color-filled contour map of 5-year cumulative gas production

For recovery efficiency calculations, we used Belden & Blake's EUR as the best measure of
ultimate well performance, which assumed an 80-acre maximum drainage area per well, and net
sand height, porosity, and extrapolated Sw values. From these assumptions, we determined that
17,312 acres are being drained with an original gas-in-place of 50 Bscf. Of thistota gas, 15.6 Bscf
is recoverable resulting in a recovery efficiency of 31.3%. Fig. 4 is a map of the study well
locations with an 80-acre maximum spacing ring surrounding each well.
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Figure 4 — Study well locations and 80-acre maximum drainage boundaries

- HOLDITCH- RESERVOIR TECHNOLOGES

"DRAINAGE AREA

Moving Domain Analysist] (MDAL) is a technique to rapidly process production data and
completion information and aids in determining reserve distributions and infill potential. It
essentially analyzes a mosaic of overlapping localized studies (domains) and requires only minimal
data such as latitude/longitude of each well, and monthly production information. Each of the 159
wells has been compared with offset wells in its vicinity based upon the 5-year cumulative
production indicator. We have statistically determined that this is a reliable short-term indicator of
long-term well performance and is influenced by reservoir quality, completion, and operating
conditions.

Fig. 5isachart of date of first production versus 5-year cumulative production for the wellsin the
study, and shows that these values range from zero to about 225 million standard cubic feet
(MMscf), though most are 75 MMscf or less.
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5yr. Cumulative Gas (Mscf)

Figure 5 — Date of first production versus 5-year cumulative production
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During the MDA process, we aso plotted 5-year cumulative on a chart’s y-axis, versus dates of
first production on an x-axis. We did this for each well (target well) and all offsets within its
domain. Thisenabled usto identify target wells that were underperforming relative to their offsets.
Fig. 6 isan example of awell producing at arate lower than we would expect based upon wellsin
itsdomain, and is potentially a candidate for recompletion due to underperformance.

Figure 6 — Example of underperforming well
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Depletion can also be recognized with the use of MDA and viewing 5-year cumulative figures
versus DOFP. An indication that depletion may be occurring within a domain is a negative slope
of a best-fit linear regression trend line of thisdata. Fig. 7 shows depletion over time. Note that 5-
year values become lower as DOFP' s move forward in time.

Figure 7 — Example of depletion based on 5-year cumulative production
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5.3 Stimulation Candidates

H-RT used a Moving Domain Analysis] to calculate each wells expected 5-year cumulative based
upon the wells within its domain versus its actual 5-year production history. Wells below the norm
may be restimulation candidates. Table 5isalist showing our top candidates.

Table 5 — H-RT list of restimulation candidates

Well_Name 5yr Domain Difference Recovery
Cumulative Median (Mscf) Factor (%)
Gas (Mscf) (Mscf)

MOTRYNCZUK, PAUL  #382 44,580 89,907 45,327 23%
SHEPARD, GEORGE #297 20,063 64,631 44,568 40%
SUPPO, PETER #073 8,613 40,065 31,452 20%
STARR, HERB  #151 8,106 35,658 27,552 2%
CRANDALL, RICHARD  #327 15,300 41,900 26,600 6%
DEAN, LUTHER #017 6,242 28,133 21,891 4%

RAYNOR, WARD  #386 10,515 31,959 21,444
BROWN, CHARLES #028 37,280 57,661 20,381 92%
BERGER, CARL  #288 6,694 23,222 16,528 6%
LONGHOUSE, ARTHUR  #064 11,892 28,250 16,358 25%
BEARDSLEY, JOHN  #134 12,446 25,525 13,079 9%
JOHNSTON, CHARLES #304 17,100 29,362 12,262 7%
BARKER, JAMES  #338 5,280 16,392 11,112 86%
DARBY, LEON #336 7,174 17,892 10,718 14%
YONKERS, FRANK  #137 12,680 22,448 9,768 17%
HOWARD, VELMA  #320 3,959 11,901 7,942 27%
WELLMAN, DONALD  #120 5,115 11,023 5,908 5%
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IS applied a virtual intelligence neural network to identify wells with restimulation potential
utilizing neural nets, genetic algorithms, engineering expertise, and fuzzy logic. Parameters such

as 5-year cumulative, reservoir quality index, last production rate, were processed.

Thereservoir quality index is equal to:

(net porosity * net pay thickness) vedina + 2(Net porosity * net pay thickness) whiripool

Number of perforations

The Whirlpool has been given more weight than the Medina in this equation. I1S's recompletion
candidates are shown in Table 6. Further detail is presented in their attached final report.

Table 6 — IS list of top 25 restimulation candidates

Final Ranking
Ranking
Rank Well Name Last Month Reservoir Three-Input
Rate Quality System
1 Suess, George #430 1 2 4
2 Wills, William #325 13 3 2
3 Winchell, Francis #303 16 5 3
4 Palmer, Lonnie #074 17 8 1
5 Martin, David #300 5 1 21
6 Augustinians of the Assum #103 6 14 14
7 McLarney, Jane #102 19 13 5
8 Suppo, Jeter #073 15 18 9
9 Scholl, Mary A. #115 14 21 12
10 Smith, Warren #069 23 11 13
11 Colt, Alvin #024 11 20 22
12 Smith, M. #1 #245 6 8
13 Cranston, Claude #311 4 11
14 Village of Brocton #299 17 7
15 Dubois, Florence #079 16 10
16 Cornell, Gordon #423 12 19
17 Chilcott, Eugene #365 20 18
18 Barber #2 24 15
19 Van Dette, Albert #356 22 17
20 Bemus, Cecile #214 23 24
21 Crandall, Richard #326 25 25
22 Straight, Frank #140 16
23 Miller, Morris #433 20
24 Josephson, Walfred #329 21
25 Zook, Marvin #276 23
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Decline curve analysis was used by ARI to recognize underperforming wells and its list is
presented in Table 7. ARI used type curve matching to distinguish wells that potentially offer
incremental reserves. Since none of the study wells had been recompleted, production profiles of
wells that previously had artificia lift systems installed were evaluated and used as models for
representative type curves.

Table 7 — ARl list of restimulation candidates

a) Rankings by Incremental Recovery Due to Restimulation

TC Results Restim Inc.

Well Well 5Yr P 5Yr 5Yr
No. Name Formation k Xf A Cum 5/01 Cum Cum

(md) (ft) (acres) | (Bcf) | (psia) (Bcf) (MMcf)

16 Bemus, Cecile, #214 Comingled | 0.150 - 74 0.010 380 0.021 10.5

115 Raynor, Ward, #323 Comingled | 0.056 5 62 0.013 518 0.022 9.4
150 Wellman, Donald #120 Comingled | 0.007 - 21 0.003 716 0.011 7.6
146 Van Dette, Albert #356 Comingled | 0.070 10 110 0.012 579 0.020 7.5
117 Reno, Norman #277 Comingled | 0.055 7 131 0.011 467 0.019 7.3
87 Marrano, Anthony #389 Comingled | 0.023 25 73 0.007 570 0.015 7.2

110 Powell, Irving #077 Comingled | 0.066 15 137 0.009 406 0.017 7.2
63 Furmanek, Aloysious #144 | Comingled | 0.090 9 293 0.013 426 0.019 6.1

34 Chilcott, Eugene #365 Comingled | 0.325 20 104 0.022 283 0.028 6.0

149 Webster Castle Inn #015 Grimsby | 0.140 15 104 0.015 365 0.021 6.0

b) Rankings by Incremental Recovery Due to Added Lease Compression

TC Results Restim Inc.

Well Well 5Yr P 5Yr 5Yr
No. Name Formation k Xf A Cum 5/01 Cum Cum

(md) (ft) (acres) | (Bcf) | (psia) (Bcf) (MMcf)

154 Wills, William #325 Comingled | 0.150 15 62 0.002 366 0.028 25.4
97 Miller, Morris #433 Comingled | 0.210 35 109 0.005 279 0.027 21.3

94 Mikula, Joseph #152 Grimsby | 0.075 25 259 0.012 471 0.027 15.0

140 Sutton, David #315 Comingled | 0.140 25 268 0.017 440 0.032 14.7
112 Przybylski, Leonard #113 | Comingled | 0.110 15 255 0.009 390 0.021 12.5
75 Josephson, Walfred #329 Grimsby | 0.090 15 109 0.005 423 0.017 11.3

145 Van Dette, Albert #339 Comingled | 0.065 13 77 0.008 462 0.019 10.7
153 Wilkens, Roy #343 Comingled | 0.100 17 133 0.013 407 0.021 7.8
52 Dennison, Wilber #062 Comingled | 0.090 20 133 0.008 359 0.016 7.7

82 Lanford, C. #240 Comingled | 0.105 14 43 0.004 303 0.011 7.4
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BACKGROUND

In 1996, GRI commissioned an evaluation of the benefits that could be realized
from restimulation of existing gas wells. This analysis suggested that over 1 Tcf
of reserves and up to $500 million in benefits could be derived from successful
restimulation programs in the tight gas reservoirs of South Texas, Mid-continent,
and Rocky Mountain Regions of the United States. Additionally, case studies
have shown that restimulation benefits are greatest in low permeability,
unconventional resources such as the tight Medina and Whirlpool sands of
southwest New York State. This project is designed to apply the methodology
employed in GRI restimulation projects being performed in the Frontier sand of
Wyoming, Mesaverde sand of Colorado, Wilox/Lobo sand of South Texas, and
Cotton Valley sands of East Texas to the Medina/Whirlpool sands of western
New York.

This report summarizes the efforts by Intelligent Solutions, Inc. to apply the
intelligent systems approach to the Medina/Whirlpool sands of western New
York, and consequently select and rank the restimulation candidates in this
formation.

The report will start by a brief explanation of the methodology developed by the
Intelligent Solutions, Inc. for restimulation candidate selection, and then will cover
the application of this methodology to the Medina/Whirlpool sands of western
New York.



METHODOLOGY

This section summarizes the intelligent systems approach developed by
Intelligent Solutions Inc. for the restimulation candidate selection. Figure 1 is a
flowchart that represents the process developed for this methodology. This figure
is used as a road map to explain the intelligent systems methodology.

Neuvral Ners Generlc
AALZoriTixns

Engfreerine
Expertise

Fzzy Losic

Restinxiarfon Candidares

Figure 1. Virtual intelligence approach for restimulation candidate selection.

Three steps are involved for selecting restimulation candidates using virtual
intelligence techniques. Before starting the process, however, a data set that
includes all the relevant available data for the formation being studied should be
compiled. The data usually includes four major categories. First the general
information about each well. This can include the location coordinates of the
wells, an indication of the depth, and the date the well was put into production.
Second category addresses reservoir quality. Information in this category may
include net pay, porosity, saturation, permeability (if available) and any kind of
pressure indicator. If the reservoir is consists of several layers, it helps to have
the above information on a per layer (zone) basis. The third category is the
stimulation-related data. This data may include information on the type and



amount of proppant that has been used, type and amount of fracturing fluid,
perforation density and information on the number of zones and layers involved
in each frac job in the event of a layered reservoir. The last category includes
mainly production data. This data is used to calculate five-year cumulative
production or EUR for each well. The five-year cumulative production or EUR
would be the production indicator to which the above parameters are correlated.

The data that needs to be compiled can usually be found in well files and publicly
available databases. Once the data set has been compiled, the next step is to
apply the virtual intelligence approached. The first step of this process calls for
the use of neural networks.

STEP 1: Neural Network Analysis

Neural networks are used to build a representative model of well performance in
the particular reservoir being studied. The data is used as input-output pair to
train the neural network. The first three categories — well information, reservoir
guality and stimulation related data - are used as input and are coupled with the
fourth category — production data — as output.

Since it is impractical to model such a complex process using the conventional
modeling techniques — mathematical modeling — neural networks can provide a
valuable insight into the intricacies of interaction of the formation with the
hydraulic fracturing designs and implementations. Once a reasonably accurate
and representative neuro-model of the stimulation processes has been
completed for the formation under study, more analysis can be performed. These
analyses may include the use of the model in order to answer many “what if”
guestions that may rise. Furthermore, the model can be used to identify the best
and worst completion/stimulation practices in the field.

The ideal situation for using a neural model in restimulation candidate selection is
when some restimulation jobs have been performed and some known results
exists. These results can be used during the model building process to calibrate
the accuracy of the model. In the case that such restimulation jobs do not exist, a
surrogate method should be used in an attempt to deduce the maximum
information from the available data.

This brings us to the second step of the methodology. Now that we have a
representative model of the stimulation process for the formation being studied,
how can we use it to identify in which wells restimulation potential exist? Once
the neural model has identified the best practices, each hydraulic fracture
treatment can be tested to examine if the stimulation job that had been
performed was the best design for that particular well at the time it was
implemented. The degree of departure from the optimum design is translated to
the missed production opportunity, which in turn can be used as a proxy for
restimulation potential.



STEP 2: Genetic Optimization

Genetic algorithms are used to perform this section of the analysis. The neural
networks developed in the first step are used as the “fithess function” for the
genetic algorithm routines.

The process of identifying the missed production opportunities - because of less
than optimum hydraulic fracturing treatments - is as follows. The neuro-model
developed in the first section of the methodology is able to provide an output
(e.g., five-year cum.) based on the input to the network, namely, stimulation
design, well information and reservoir quality for each particular well. Among
these input categories only stimulation design parameters are controllable. Well
information and reservoir quality is obviously beyond the engineer’s control.
Therefore, the genetic algorithm is set to search among all the possible
combinations of the stimulation parameters and identify the most optimum
combination. The most optimum combination of stimulation parameters are
defined as the combination that for any particular well (based on the well
information and reservoir quality) provides the highest output (five-year
cumulative production - 5YCum). The difference between the 5YCum from the
optimum stimulation treatment and the actual 5YCum produced by the well is
interpreted as the production potential that may be recovered by restimulation of
that well. This incremental production is the surrogate variable that was
mentioned in the previous section.

This analysis concludes the second part of the methodology. Furthermore, the
candidate selection process is not entirely based on the outcome of the genetic
algorithms.



STEP 3: Fuzzy Decision Support System

The third and final step of the restimulation candidate selection methodology
incorporates a fuzzy decision support system. This fuzzy expert system uses the
information provided by the neural networks and genetic algorithms. The expert
system then augments those findings with information that can be gathered from
the expert engineers who have worked on that particular field for many years in
order to select the best restimulation candidates. Keep in mind that the
information provided to the fuzzy expert system may be different from formation
to formation and from company to company. This part of the methodology
provides the means to capture, maintain and use some valuable expertise that
will remain in the company even when engineers are transferred to other
sections of the company where their expertise is no longer readily available. The
fuzzy expert system is capable of incorporating natural language to process
information. This capability provides maximum efficiency in using the imprecise
information in less than certain situations. A typical rule in the fuzzy expert
system that will help engineers in ranking the restimulation candidates can be
expressed as follows:

If the well shows a high potential for an increase in 5YCum, And has a
moderate pressure, And has a low proppant volume for the net pay completed,
Then this well is a good candidate for restimulation.

A truth-value is associated with every rule in the fuzzy expert system developed
for this methodology. The process of making decisions using fuzzy subsets using
the parameters and relative functional truth-values as rules provides the means
of using approximate reasoning in making decisions. This process is known to be
one the most robust methods in developing high-end expert systems in many
industries.



RESULTS AND DISCUSSIONS

S. A. Holditch Reservoir Technology was in charge of gathering, compiling and
organizing the available data into a database format. Once the data was received
from S. A. Holditch Reservoir Technology some preliminary data processing was
carried out in order to develop a better understanding of the nature of the
available data. This part of the data processing mainly included conventional
statistical analysis. Also some preprocessing of the data was required to prepare
it for use by the remaining of the analysis.

Table 1 shows the data extracted from the database to be used for the analysis
in this study.

Category Parameter Definition
General API_Number Well APl number
WELL NAME Well name
Location X x coordinate of the well
Y y coordinate of the well
UG_Top Depth to the top of Upper Grimsby
WP_Top Depth to the top of Whirlpool
Reservoir Quality Net_PhiH TG Net porosity, net pay product for all of Grimsby
Net_PhiH WP Net porosity, net pay product for all of Whirlpool
Completion MEDINA PERFS TOP Depth to the top of the Medina perforations
MEDINA PERFS BOTTOM Depth to the bottom of the Medina perforations
NUMBER OF PERFS MEDINA Number of perforations in Medina
PERF DIAMETER Diameter of perforations
WHIRLPOOL PERFS TOP Depth to the top of the Whirlpool perforations
Stimulation BBL WATER MEDINA Barrels of water used during stimulation
MMCF N2 MEDINA MMCF of Nitrogen used during the stimulation
SKS SAND MEDINA Sacks of sand used during the stimulation
ISIP MEDINA Initial Shut-In Pressure
AVE TREATING RATEMEDINA |Average treatment rate
TREATING PRESS MEDINA Average treatment pressure
Production Prior_Production_Gas Cumulative gas produced

Remaining_Gas
Ultimate_Gas
Gas_Months_Prod
Gas_Last_1_Months
Gas_Last_3 Months
Gas_Last_6_Months
Gas_DOFP

Gas_DOLP
Gas_Best_12 Months

Gas_5-Yr_Cum
Gas_10-Yr_Cum

Remaining gas to be produced

Estimated Ultimate Recovery

Number of months the well was on production
Lastone month of gas production

Lastthree months of gas production

Last sixmonths of gas production

Date of the first gas production

Date of the last gas production

Best 12 months of gas production
Five year cumulative production
Ten year cumulative production

Table 1. Data used for the analysis.




Please note that the above data was extracted from the database after the
completion of the preliminary statistical analysis. This does not necessarily mean
that all of the parameters shown in the Table 1 were used as input to the neural
network. As a matter of fact after further analysis some of the parameters shown
in Table 1 were eliminated from the list of parameters used in the final neural
network predictive model.

STEP 1: Neural Network Analysis

In this section the result of neural network analysis will be presented. The
analysis started with identifying the most influential category of the input
parameters in the data set. The parameters in the data set were divided into five
categories such as location, reservoir quality, completion, stimulation, and
production. The results of this analysis will indicates the chances for the success
of a restimulation program. The higher the influence of a category of parameters,
the higher will be the chances for a successful restimulation program if the
parameters of that category are altered in a positive manner. It should be
indicated that the word "success" is being used in a relative context. Figure 2
shows the neural network analysis for identification of most influential category in
this data set. This figure demonstrates that the influence of completion and
stimulation parameters are limited when compared to reservoir quality and
production categories.
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Location  Res. Qualty Conmpletion  Stimulation  Production

Figure 2. Influence of the categories in the data set.

This may lead to interpretations such that the stimulation practices in this field
are not as effective as one would like them to be. It may also be concluded that a
different set of stimulation practices should be tried in this field. It should be




noted that almost all of the jobs in this field have been water fracs (at least those
in our data set). Since the parameters in the stimulation category are the only set
of parameters that can be altered during the optimization process (they are the
only controllable parameters), the results in Figure 2 indicates that the
improvements realized by the optimization process would also be limited.

Two production indicators, Best 12 months of production, Five year cumulative
production, were used as the output for training of the neural networks. The input
parameters were chosen from those shown in Table 1. Figures 3 and 4 show the
results of the neural model building process.
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Figure 3. Training and verification data for best 12 months production indicator.
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Figure 4. Training and verification data for five year cumulative production

indicator.

It can be seen from these two figures that five year cumulative is a better
production indicator than the best 12 months production to be used for our
analysis. This conclusion is simply based on the correlation coefficient of the
above two figures. The correlation coefficients for Figures 3 and 4 are shown in

the Table 2 below.

Patterns processed:
Output:

Correlation coefficient r:

Training Testing
103 25
Best 12 5Yr. Cum. Best 12 5Yr. Cum.
0.9694 0.9833 0.8492 0.9546

Table 2. Correlation coefficients for Figures 3 and 4.
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STEP 2: Genetic Optimization

The first step in the genetic optimization process is the identification of
controllable parameters. In this field the controllable parameters consist mainly of
the stimulation parameters. These parameters are:

Amount of water used in the frac job
Amount of Nitrogen used in the frac job
Amount of sand used in the frac job
Average Treating Rate

Treating Pressure

* & & o o

During the genetic optimization process the neural network that was developed
during the step 1 of the process is used as the fitness function. The minimum and
maximum for each of the above parameters are identified and the search and
optimization process looks for the ideal combination of these parameters that
results in the highest five year cumulative production using the neural network as
the model that provides that output (five year cumulative production) when
presented with inputs.

This process is repeated for each individual well. The pre-optimization five year
cumulative production is then subtracted from the post-optimization five year
cumulative production and the difference is suggested to be the "potential five
year cumulative production”. The idea is that the "potential five year cumulative
production” is the incremental production that would have been recovered if the
optimized stimulation job would have been implemented on the well, and
therefore would be the recoverable production upon restimulation.

A software application was developed to perform the operations explained in
steps 1 and 2 for the Medina/Whirlpool sands of western New York. Figures 5
and 6 show two screen shots of this software application. Figure 5 shows the
screen shot for the neural predictive model. This application interfaces the
database developed for this project. It provides all the available information for
each well as the well is selected in the list box. The application includes a run-
time version of the developed neural model and provides an answer for five year
cumulative production each time the network is fired.

12



m. Inteligent Restimulation Analyst - IRA

D|=|a|

DEMMIZON. WWILBER
DEAM, LUTHER  #0
SKINMNER, CHARLES
FOWELL LELAMD
COLT. ALWIM - #024
CARLSEOMN, THOMAS
SCHOLL, MARNY A,
FPRZYBEYLIKL LEOMN,
BECKER. GAIUZ  #
FURMAMEE, ALOYS
| HC .
CASE DOROTHY
SMELL WILLIS  #0B
HAMCOCK, RUTH
BROWMN. CHARLES
SCHRADER. ROBE
KELLY. RAN #121
MCLARMNEY. JAMNE
RIZZO-FAY. CLIFFST,
SUPPO. PETER  #
CIMINELLO, JOSEFPH
FARPARWILLIARNM
FARPAR WWILLIAM
PALMER, LOMNMIE
LOMNGHOUSE. LESTI
SMITH. WARREMN  #

Figure 5. Neural predictive model interface.
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Figure 6 show the genetic optimization interface. It also shows the process of
evolution of the best solution (stimulation detail) as the process completes.

W, Inteligent Restimulation Analyst - IRA !EIB
File GaAparameter  About

Dlﬁlﬂl

MNEURAL MODEL T GENETIC OPTIMIZATION

Convergence Criteria

Import Data From ™ sum of the population does not improve in 5 generations
Database I No improvement in the Best Individual in 5 generations

M Total number of generations reached

Apply GA I

Best individual

Sum of each generation

o

OPTIMIZED |
The GA run’s Stopped._ .. [ ]
INTELLIGENT SOLUTIONS Exit | NYSERDA Gas Research Institute

Figure 6. Genetic optimization interface.
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STEP 3: Fuzzy Decision Support System

In a recent project sponsored by Gas Technology Institute (GTI) it was found that
last month production of a well is a good indicator of the well being a
restimulation candidate. Therefore it was decided to use this indicator along with
two other parameters as the inputs to the fuzzy decision support system. The
following three parameters were used in this section of the study:

1. Potential five-year cumulative production from steps 1 and 2.
2. Reservoir quality.
3. Last month production rate.

The reservoir quality was calculated using the following relationship:

Net(¢* h) Madina + 2 Net(¢* h)\/\/‘nirlpool
No. of Perforations

reservoir quality index =

The above equation was designed in order to give more weight to the Whirlpool
formation.

Three different fuzzy decision support systems were designed. The first and
second fuzzy systems had two inputs and one output while the third fuzzy system
had three inputs and one output.

First Fuzzy System

The inputs to this fuzzy system included potential five-year cumulative production
and last month production rate.

Low Medium .
Fuzzy High

Member ship

Univer se of Discour se

Figure 7. A typical set of fuzzy sets for the input or output parameters.
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The output for this fuzzy system is the restimulation candidacy. Figure 7 shows
the typical fuzzy sets for each one of the parameter. For the two input
parameters the fuzzy sets included low, medium and high. The fuzzy sets for the
output were "The well is not a candidate”, "The well may be a candidate", and
"The well is a candidate". Using two input parameters each having three fuzzy
sets requires the fuzzy system to have nine fuzzy rules. The nine fuzzy rules for
this system is shown in figure 8.

Low| No (VT) No (T) May Be (T)
Medium| NO (T) May Be (T)| Yes (T)
High| May Be (T)| Yes (T) Yes (VT)
Low Medium High
Last Month Rate

Incremental

Figure 8. Set of nine fuzzy rules used for the first fuzzy system.
A typical fuzzy rule in the above figure can be written as:

If the potential five year cumulative production for this well is Low and the Last
month production rate is Low then the well is not a restimulation candidate. This
rule in the above figure is qualified by the approximate reasoning parameter "very
true" (VT). The approximate reasoning in this fuzzy system is constructed as
shown in Figure 9.

10

Very Tru

0.0

0.0 10

Figure 9. The approximate reasoning algorithm used in the fuzzy systems.
The above approximate reasoning algorithm provides qualification for each rule

distinguishing them from one another. Two different fuzzy rules may have the
same outcome but based on the input values one might be more or less true than

16



the other. The approximate reasoning algorithm is designed to account for such

gualifications.

The fuzzy sets,

rules and inference engine were embedded in a Windows

application to assist in implementation of the fuzzy system for the Madina/
Whirlpool sands of western New York. Figure 10 shows the interface of this

application.

w. Fuzzy
File  Ahout

NYSERDA - GRI Restimulation Project

Well Name

DEMMISON, WILBER

SKINMER, CHARLES #0957
POWELL, LELAND ~ #023
COLT, ALWIN - #024
CARLSOM, THOMAS #0075
SCHOLL, MARY A, #115

PRZYBYLSKL, LECMNARD  #

FURMANEK, ALOMSIOUS
MORRISOMN, HOWARD L,
CASE, DOROTHY #0071
SMELL, WILLIS ~ #060
HAMCOCK, RUTH #0359
BROWN, CHARLES #028
SCHRADER, ROBERT  #07E
KELLY, RAY  #121
MCLARMEY, JANE  #102
RIZZO-FLY, CLIFFSTAR  #
SUPPO, PETER.  #073
CIMIMELLO, JOSEPH  #147
FARRAR,WILLIAM  #034
FARRAR, WILLIAM #0236
PALMER, LONNIE #0074
LOMGHOUSE, LESTER  #0
SMITH, WARREN #0563
DUBDIS,FLOREMCE - #079
STRAIGHT, FRANK.  #140
HOWARD, R, DAY #1465
CROSS, JUME #0965
BECKER, GAIUS  #027
STEINHOFF, ARVID  #141
CAWE, RONALD #1485
POWELL, IRVING #0077
JOHNSOM, MEIL - #1359
KEMMEDY, RICHARD #3221

AUGUSTINIANS OF THE ASS

#06: -
DEAM, LUTHER  #017  —

J—

June 2000
Fuzzy Sets for Last Month Production

Sets |Slope| Stad | End
Faill 80
Med. | Rise a0
Faill 200
High | Rise 200
C-n [plrke)
Fuzzy Sets for Increment
Sets |Slope| Start | End i
Low | Rise 7908.44 7908.44f
Fall 4774329 87578.1
Med. | Rise 47743.29 A7678.1
Faill 127412.99 167247.8
Al M 197419 QN 107?247 0

Fuzzy Set for Candidates (output)

Sets |Slope| Stad | End
Mo Rise 1]
Fall 0.2 0.
Mayk| Rise 0.z 0.
Fall 0.59 0.
A M- ncn n

Is This Well A Candidate?

0
Redraw Fuzzy Sets Is the well a restimulation candidate —

19.8659

Batch Process Degree of confidence : Maybe 1

3d

Exit Yes : 1 i

Figure 10. The application interface for the first fuzzy systems.
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Using this application and applying the fuzzy system to every individual well in
the study and then ranking them based on the system output provided a list that
shows the top restimulation candidates. Figure 11 shows the top 25 candidates
selected using the first fuzzy system with two inputs.

Rank Well Name
1 SUESS, GEORGE #430

2 PRZYBYLSKI,LEONARD #113
3 MIKULAJJOSEPH #153

4 SUTTON, DAVID #315

5 MARTIN, DAVID  #300

6 AUGUSTINIANS OF THE ASSUM #103
7 WILKENS, ROY #343

8 DORMAN, G. & M. #3 #373

9 CROSS, LINDA KAHLE #388
10 |LONGHOUSE ESTATE,INC. #24
11 | COLT,ALVIN #024

12 POWELL,LELAND #023

13 |WILLS, WILLIAM  #325

14 |SCHOLL,MARY A. #115

15 ' SUPPO,PETER #073

16 |WINCHELL, FRANCIS #303
17 |PALMER,LONNIE #074

18 FURMANEK ALOYSIOUS #144
19 |MCLARNEY,JANE #102

20 CHILCOTT,EUGENE #365
21 |BECKER, GAIUS #027

22 |MIKULA,JOSEPH #152

23 | SMITH,WARREN #069

24 BARBER#2

25 |DORMAN,G.&M.#2 #349

Figure 11. Top 25 restimulation candidates from the first fuzzy system.
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Second Fuzzy System

Same approach as the first fuzzy system was used to develop a second fuzzy
system. The second fuzzy system also had two inputs and one output. The
inputs of this fuzzy system included potential five year cumulative production and
reservoir quality index. Figure 12 shows the fuzzy rules used in this fuzzy

system.

Low| No (VT) No (T) [May Be (T)
Medium| No (T) May Be (T)| Yes (T)
High|May Be (T)| Yes (T) Yes (VT)
Low Medium High

Incrementa

Reservoir Quality Index

Figure 12. Set of nine fuzzy rules used for the second fuzzy system.
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Using the same approximate reasoning algorithms shown in Figure 9 and the
application shown in Figure 10 a new set of restimulation candidates were
selected. Figure 13 shows the list of the candidates generated using the second

fuzzy system.

e
hol© o No s wNE

NN R RR R R R R R
gl W N, O V®NOOONWN

MARTIN, DAVID #300
SUESS,GEORGE #430
WILLS, WILLIAM  #325
CRANSTON, CLAUDE #311
WINCHELL, FRANCIS #3033
SMITH, M. #1 #245
PRZYBYLSKI, LEONARD #113
PALMER, LONNIE #074
MONETTE,CONSTANCE #427
FURMANEK, ALOYSIOUS #144
SMITH, WARREN #069
CORNELL, GORDON  #423
MCLARNEY,JANE #102
AUGUSTINIANS OF THE ASSUM #103
DORMAN, G. & M. #3 #373
DUBOIS,FLORENCE #079
VILLAGE OF BROCTON #299
SUPPO,PETER #073
MIKULA,JOSEPH #153
COLT,ALVIN #0224

SCHOLL, MARY A. #115

VAN DETTE, ALBERT #339
BEMUS, CECILE #214

VAN DETTE, ALBERT #356
CRANDALL, RICHARD #326

Figure 13. Top 25 restimulation candidates from the second fuzzy system.
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Last Month Rate

Third Fuzzy System

The third fuzzy system was designed with three inputs and one output. The input
parameters were included potential five year cumulative production, last month
production and reservoir quality index. Each of these input parameters had three
fuzzy sets; low, medium, and high. This resulted in 27 fuzzy rules. Figure 14
shows the 27 fuzzy rules that was used in the third fuzzy system. As can be seen
in this figure all the rules are qualified using the same approximate reasoning

demonstrated in Figure 9.

Resenvor Quality Reservoir Quality Resenvoir Quality
Low Medum Hgh
Hgh No (T) MayBe (FT) | MayBe(FT) MayBe(T) | Yes(FT) Yes (FT) Yes (T) Yes (V1) Yes (V1)
Ved| D No (T) My Be (FT) No (FT) MayBe(T) | Yes(FT) May Be (VT) Yes (T) Yes (V1)
Lo NPvD No (V1) No (T) MeyBe(FT) | No(FT) May Be(T) My Be (VT) May Be (V) Yes (T)
Low Med. Hgh Low Med. High Low Med. Hgh
Incremental | | Incremental | | Incremental

Figure 14. The 27 fuzzy rules used in the third fuzzy system.
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A new interface for the third fuzzy system was developed. This interface is shown

in Figure 15.

i, Fuzzy H=] E3

well Name Fuzzy Sets for Rezervoir Quality

Sets | Slope| Start |_End [~ Hedivm High
Low | Rise 0 0

DEMMISON. WILBER
DEAW, LUTHER  #017

Hs

SKIMMER. CHARLES 1 Fall 0.04 0.09
POWELL, LELAMD  #0 | |Med| Rise 0.04 0.09
COLT, ALWIN - #024

CARLSOM, THOMAS  # Gl e 0154
SCHOLL, MaRy &, #1° | Fuzzy Sets for Incremental

FRZVEYLSK] LEONAR = Ledivm High
BECKER, GAIUS  h0o5  |oeoioee Stat |_End |
FLRMA WREn Low | Rise 7908, 44 7908, 44
MORRISON, HOWARD L Fall 1620499 2450155
CASE,DOROTHY  #O7  |Med| Rise| 1620493 2450155
SMELL.W/ILLIS  #OE0 Fall 327981 41094.660 =

HAMCOCE, RUTH  #0EF
EROwWM, CHARLES g0  Fuzzy Sets for Last Month Rate

SCHRADER, ROBERT Sets | Slope| Start | End [«
KELLY,R&Y  #121 Eaiol Biss 5 0
MCLARMEY, JANE ~ #11 &

RIZZ0-FaY, CLIFFSTAR F4l 158 336
SUPPO,PETER #0723  [Med| Rise 198 3%
FARRAR WILLIGM  HO Fal 535 szl

FARRAR, WILLIAM  #C
PALMER, LONMIE  #07

LOMGHOUSE, LESTER Fuzzy Set for Candidates [output]

SWITH, WARREM  #0F | Sets [ Slope| Start | End [ -
DUBOIS FLOREWCE 4 Mo Rize i i
STRAIGHT, FRaMk,  #
HOWARD, R DAY #1. Fal 0.2 L5,
CROSS.JUNE  HO96 Mayt| Ris= 0.2 0.4
CIMIMELLO, JOSEFH :;I Fall 0.53 0af =
Redraw Fuzzy Sets | Is This Well A Candidate?
—Is the well a restimulation candidate ? —
Batch Process | No: | 0B7F
Degree of confidence : IE;-I:'EIEB Maybe :| [00F
Exit | Yes : il

Figure 15. The application interface developed for the third fuzzy system.
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Using the third fuzzy system a new set of restimulation candidates were selected.
This list is shown in Figure 16.

Rank

NN NN N RIR RRRRRRRR
UrwN R oooNourwWN RO ®RNOORWN

Well Name
PALMER, LONNIE #074
WILLS, WILLIAM  #325
WINCHELL, FRANCIS #303
SUESS, GEORGE  #430
MARTIN, DAVID  #300
MCLARNEY, JANE #102
VILLAGE OF BROCTON #299
SMITH, M. #1  #245
SUPPO, PETER  #073
DUBOIS,FLORENCE #079
CRANSTON, CLAUDE #311
SCHOLL, MARY A. #115
SMITH, WARREN  #069
AUGUSTINIANS OF THE ASSUM #103
BARBER #2
STRAIGHT, FRANK  #140
VAN DETTE, ALBERT  #356
CHILCOTT, EUGENE  #365
CORNELL, GORDON  #423
MILLER, MORRIS  #433
JOSEPHSON, WALFRED  #329
COLT, ALVIN #0224
ZOOK, MARVIN  #276
BEMUS, CECILE #214
CRANDALL, RICHARD #326

Figure 16. Top 25 restimulation candidates from the third fuzzy system.
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CONCLUSION

Upon completion of the analysis using three different fuzzy systems three
different lists of candidates were developed. The last step in this analysis is to
resolve the three separate lists into a single list and recommend the final list of
the restimulation candidates.

Figure 17 shows the resolved list of the candidates.

FINAL RANKING

| Ranking
Rank Well Name Last Month Rate | Reservoir Quality = Three-Input System
1 SUESS, GEORGE  #430 1 2 4
2 WILLS, WILLIAM  #325 13 3 2
3 WINCHELL, FRANCIS  #303 16 5 3
4 PALMER, LONNIE #074 17 8 1
) MARTIN, DAVID  #300 1 21
6 AUGUSTINIANS OF THE ASSUM #103 6 14 14
7 MCLARNEY, JANE #102 19 13 5
8 SUPPO, PETER #073 15 18 9
9 SCHOLL, MARY A. #115 14 21 12
(ORI SMITH, WARREN  #069 23 11 13
COLT, ALVIN  #024 11 20 22
SMITH, M. #1  #245 6 8
CRANSTON, CLAUDE  #311 4 11
VILLAGE OF BROCTON #299 17 7
DUBOIS,FLORENCE #079 16 10
CORNELL, GORDON  #423 12 19
CHILCOTT, EUGENE  #365 20 18
BARBER #2 24 15
VAN DETTE, ALBERT  #356 22 17
BEMUS, CECILE  #214 23 24
CRANDALL, RICHARD #326 25 25
STRAIGHT, FRANK  #140 16
MILLER, MORRIS  #433 20
JOSEPHSON, WALFRED  #329 21
ZOOK, MARVIN  #276 23

Figure 17. Top 25 restimulation candidates from the virtual intelligence analysis.
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APPENDIX A

Artificial Neural Networks

In a typical neural data processing procedure, the data set is divided into two
separate groups called the training and the test sets. The training set is used to
develop the desired network. In this process (depending on the paradigm that is
being used), the desired output in the training set is used to help the network
adjust the weights between its neurons or processing elements (supervised
training.) Once the network has learned the information in the training set and
has "converged,” the test set is applied to the network for verification. It is
important to note that, although the user has the desired output of the test set,
the network has not seen it. This is to ensure the integrity and robustness of the
trained network. In order to clarify the actual functionality of a neural system, a
short discussion on the mechanics and components of artificial neural network
follows. Our experience with neural networks have shown that one will get some
sort of results by treating neural a network as a black box, where one inputs the
data, trains the network and gets some output. It has been our observation that
a fundamental understanding of the theory and application of virtual intelligence
in general and neural networks specifically is essential in achieving meaningful
results and repeatable outcomes.

'.\"I
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Figure A-1. Three parts of a typical nerve cell.

25



A biological neuron is a nerve cell with all of its processes. Neurons are one of
the main distinguishing features of animals. Figure A-1 is a bipolar neuron, which
means it has two processes. The cell body contains the nucleus. Leading into the
nucleus is one or more dendrites. These branching, tapering processes of the
nerve cell, as a rule, conduct impulses toward the cell body. The axon is the
nerve cell process that conducts impulses away from the cell body. Bundles of
neurons, or nerve fibers, form nerve structures. In a simplified scenario, nerves
conduct impulses from receptor organs (such as eyes or ears) to effector organs
(such as muscles or glands). The point between two neurons in a neural
pathway, where the termination of the axon of one neuron comes into close
proximity with the cell body or dendrites of another, is called a synapse. At this
point, a microscopic gap, the relationship of the two neurons is one of contact
only. The impulse traveling in the first neuron initiates an impulse in the second
neuron. Signals come into the synapses. These are the inputs. They are
"weighted.” That is, some signals are stronger than others. Some signals excite
(are positive), and others inhibit (are negative). The effects of all weighted inputs
are summed. If the sum is equal to or greater than the threshold for the neuron,
then the neuron fires (gives output). This is an "all-or-nothing" situation. Either
neuron fires or it doesn't fire.
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Within the last few years, hardware improvements have made computer
simulation of artificial neural network possible. Although it may seem strange to
simulate a parallel process on a sequential machine, there have been many
benefits. It has bought time for the real objective of implementing neural
networks in hardware, and it has illuminated problems in earlier models.
Simulations have allowed us to better understand and improve the technology,
and to tell in advance how well a particular neural network will perform in a given
application. In addition to simulations, analog neural network circuits have been

built and tested.
W
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Figure A-2. Inputs can be connected to many nodes.

In neural computing the artificial neuron is called a Processing Element or PE for
short. The word node is also used for this simple building block, which is
represented by circles in Figure A-2. These artificial neurons bear only a modest
resemblance to the real thing. They are barely a first order approximation of
biological neurons. Neurons in the human brain perform at least 150 different
processes, where as Processing Elements model approximately three of those
processes. The PE handles several basic functions. It must evaluate input signals
and determine the strength of each one. Next, it must calculate a total for the
combined input signals and compare that total to some threshold level. Finally, it
must determine what the output should be. Just as there are much input
(stimulation levels) to a neuron, there should be many input signals to a PE. All of
them should come into PE simultaneously. In response, a neuron either "fires" or
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"doesn't fire," depending on some threshold level. The PE will be allowed a single
output signal, just as in a biological neuron - much input, one output.

In this project the collected data will be transformed into fuzzy sets (explained
below) and then a neural network is trained using the transformed data. The
neural model is built to discover any possible patterns in the data. Once the
network is trained and tested it will be the predictive model, which is one of the
objectives of this study.
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APPENDIX B

Genetic Algorithms

In order to understand genetic algorithms evolutionary computation should first
be defined.

Evolutionary Computation

Evolutionary Computation is an umbrella term used to describe computer-based
problem solving systems which use computational models of some of the known
mechanisms of evolution as key elements in their design and implementation. A
variety of evolutionary computation have been proposed.

The major ones are: Genetic Algorithms, Evolutionary Programming, Evolution
Strategies, Classifier Systems, and Genetic Programming. They all share a
common conceptual base of simulating the evolution of individual structures via
processes of selection, mutation, and reproduction. The processes depend on the
perceived performance of the individual structures as defined by an environment.
More precisely, Evolutionary Computation maintain a population of structures,
that evolve according to rules of selection and other operators, that are referred
to as "search operators”, (or genetic operators), such as recombination and
mutation. Each individual in the population receives a measure of it's fitness in
the environment. Reproduction focuses attention on high fitness individuals, thus
exploiting the available fitness information. Recombination and mutation perturb
those individuals, providing general heuristics for exploration. Although simplistic
from a biologist's viewpoint, these algorithms are sufficiently complex to provide
robust and powerful adaptive search mechanisms.

Biological Basis

To understand Evolutionary Computation, it is necessary to have some
appreciation of the biological processes on which they are based. Firstly, we
should note that evolution (in nature or anywhere else) is not a purposive or
directed process. That is, there is no evidence to support the assertion that the
goal of evolution is to produce Mankind. Indeed, the processes of nature seem to
boil down to a haphazard generation of biologically diverse organisms. Some of
evolution is determined by natural selection or different individuals competing for
resources in the environment. Some are better than others. Those that are
better are more likely to survive and propagate their genetic material.
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In nature, we see that the encoding for genetic information (GENOME) is done in
a way that admits asexual reproduction. Asexual reproduction typically results in
offspring that are genetically identical to the parent. (Large numbers of
organisms reproduce asexually; this includes most bacteria which many
biologists hold to be the most successful species known.) Sexual reproduction
allows some shuffling of chromosomes, producing offspring that contain a
combination of information from each parent. At the molecular level what occurs
(wild oversimplification alert!) is that a pair of almost identical chromosomes
bump into one another, exchange chunks of genetic information and drift apart.
This is the recombination operation, which is often referred to as CROSSOVER
because of the way that biologists have observed strands of chromosomes
crossing over during the exchange.

Recombination happens in an environment where, among other things, the
selection of who gets to mate is a function of the fitness of the individual, i.e.
how good the individual is at competing in its environment. Some Evolutionary
Computational technics use a simple function of the fitness measure to select
individuals (probabilistically) to undergo genetic operations such as crossover or
asexual reproduction (the propagation of genetic material unaltered). This is
fitness-proportionate selection. Other implementations use a model in which
certain randomly selected individuals in a subgroup compete and the fittest is
selected. This is called tournament selection and is the form of selection we see
In nature when stags rut to vie for the privilege of mating with a herd of hinds.

Much Evolutionary Computation research has assumed that the two processes
that most contribute to evolution are crossover and fitness based
selection/reproduction. As it turns out, there are mathematical proofs that
indicate that the process of fitness proportionate reproduction is, in fact, near
optimal in some senses.

Evolution, by definition, absolutely requires diversity in order to work. In nature,
the primary source of diversity is mutation. In Evolutionary Computation, a large
amount of diversity is usually introduced at the start of the algorithm, by
randomizing the GENEs in the population. The importance of mutation, which
introduces further diversity while the algorithm is running, therefore continues to
be a matter of debate. Some refer to it as a background operator, simply
replacing some of the original diversity which has been lost, while others view it
as playing the dominant role in the evolutionary process.

It cannot be stressed too strongly that an evolutionary algorithm (as a simulation
of a genetic process) is not a random search for a solution to a problem (highly
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fit individual). Evolutionary Computations use stochastic processes, but the result
Is distinctly non-random search.

What's a Genetic Algorithm?

Genetic Algorithm is a model of machine learning which derives its behavior from
a metaphor of one of the mechanisms of evolution in nature (namely, hard
selection). This is done by the creation within a machine of a population of
individuals represented by chromosomes, in essence a set of character strings
that are analogous to the base-4 chromosomes that we see in our own DNA. The
individuals in the population then go through a process of selection (evolution).
Genetic Algorithms are used for a number of different application areas. An
example of this would be multidimensional optimization problems in which the
character string of the chromosome can be used to encode the values for the
different parameters being optimized. In practice, therefore, we can implement
this genetic model of computation by having arrays of bits or characters to
represent the chromosomes. Simple bit manipulation operations allow the
implementation of crossover, mutation and other operations. Although a
substantial amount of research has been performed on variable length strings
and other structures, the majority of work with Genetic Algorithms is focussed on
fixed-length character strings. We should focus on both aspects of fixed-
lengthiness and the need to encode the representation of the solution being
sought as a character string, since these are crucial aspects that distinguish
genetic programming, which does not have a fixed length representation and
there is typically no encoding of the problem.

When the Genetic Algorithm is implemented it is usually done in a manner that
involves the following cycle: Evaluate the fitness of all of the individuals in the
population. Create a new population by performing operations such as crossover,
fitness- proportionate reproduction and mutation on the individuals whose fitness
has just been measured. Discard the old population and iterate using the new
population.

One iteration of this loop is referred to as a generation. There is no theoretical
reason for this as an implementation model. Indeed, we do not see this
punctuated behavior in populations in nature as a whole, but it is a convenient
implementation model. The first generation (generation 0) of this process
operates on a population of randomly generated individuals. From there on, the
genetic operations, in concert with the fitness measure, operate to improve the
population.
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APPENDIX C
Fuzzy Logic

Fuzzy Logic has emerged as a profitable tool for the controlling of subway
systems and complex industrial processes, as well as for household and
entertainment electronics, diagnosis systems and other expert systems. Fuzzy
Logic is basically a multi-valued logic that allows intermediate values to be
defined between conventional evaluations like yes/no, true/false, black/white, etc.
Notions like rather warm or pretty cold can be formulated mathematically and
processed with the computer. In this way an attempt is made to apply a more
human-like way of thinking in the programming of computers. Fuzzy Logic was
initiated in 1965 by Lotfi A. Zadeh, professor of computer science at the
University of California in Berkeley. Zadeh started Fuzzy Logic as a means to
model the uncertainty of natural language. Zadeh says that rather than regarding
fuzzy theory as a single theory, we should regard the process of ~ ~fuzzification"
as a methodology to generalize ANY specific theory from a crisp (discrete) to a
continuous (fuzzy) form. Thus recently researchers have also introduced "fuzzy
calculus”, "fuzzy differential equations™, and so on.

Fuzzy Sets

Just as there is a strong relationship between Boolean logic and the concept of a
subset, there is a similar strong relationship between fuzzy logic and fuzzy subset
theory. In classical set theory, a subset U of a set S can be defined as a mapping
from the elements of S to the elements of the set {0, 1},

u.s-->{0, 1}

This mapping may be represented as a set of ordered pairs, with exactly one
ordered pair present for each element of S. The first element of the ordered pair
is an element of the set S, and the second element is an element of the set {0,
1}. The value zero is used to represent non-membership, and the value one is
used to represent membership. The truth or falsity of the statement:

xisinU

is determined by finding the ordered pair whose first element is X. The statement
is true if the second element of the ordered pair is 1, and the statement is false if
itis O.
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Similarly, a fuzzy subset F of a set S can be defined as a set of ordered pairs,
each with the first element from S, and the second element from the interval
[0,1], with exactly one ordered pair present for each element of S. This defines a
mapping between elements of the set S and values in the interval [0,1]. The
value zero is used to represent complete non-membership, the value one is used
to represent complete membership, and values in between are used to represent
intermediate DEGREES OF MEMBERSHIP. The set S is referred to as the
UNIVERSE OF DISCOURSE for the fuzzy subset F. Frequently, the mapping is
described as a function, the MEMBERSHIP FUNCTION of F. The degree to which
the statement

XisinF

Is true is determined by finding the ordered pair whose first element is x. The
DEGREE OF TRUTH of the statement is the second element of the ordered pair.
In practice, the terms "membership function” and fuzzy subset get used
interchangeably. Let's clarify these definitions with an example. Let's talk about
people and "tallness". In this case the set S (the universe of discourse) is the set
of people. Let's define a fuzzy subset TALL, which will answer the question "to
what degree is person x tall?" Zadeh describes TALL as a LINGUISTIC VARIABLE,
which represents our cognitive category of "tallness”. To each person in the
universe of discourse, we have to assign a degree of membership in the fuzzy
subset TALL. The easiest way to do this is with a membership function based on
the person's height.

tall(x) = { O, IF height(x) < 5 ft.,
(height(x)-5ft.)/2 ft., IF 5 ft. <= height (x) <=7 ft.,
1, IF height(x) > 7 ft.
}
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Graph of the above statement would look like this:
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Given this definition, here is some example values:

Person Height Degree of Tallness
Billy 32" 0.00

Joe 5'5" 0.21

Drew 5'9" 0.38

Erik 5' 10" 0.42

Mark 6'1" 0.54

Kareem 72" 1.00

Expressions like "A is X" can be interpreted as degrees of truth, e.g., "Drew is
TALL"=0.38. Membership functions used in most applications almost never have
as simple a shape as tall(x). At minimum, they tend to be triangles pointing up,
and they can be much more complex than that. Also, the discussion characterizes
membership functions as if they always are based on a single criterion, but this
isn't always the case, although it is quite common. One could, for example, want
to have the membership function for TALL depend on both a person's height and
their age (he's tall for his age). This is perfectly legitimate, and occasionally used
in practice. It's referred to as a two-dimensional membership function, or a "fuzzy
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relation”. It's also possible to have even more criteria, or to have the membership
function depend on elements from two completely different universes of
discourse.

Logic Operations

Now that we know what a statement like "X is LOW" means in fuzzy logic, how do
we interpret a statement like

X'is LOW and Y is HIGH or (not Z is MEDIUM)

The standard definitions in fuzzy logic are:

truth (not x) = 1.0 - truth (x)
truth (x and y)

minimum (truth(x), truth(y))
truth (x ory) = maximum (truth(x), truth(y))

Some researchers in fuzzy logic have explored the use of other interpretations of
the AND and OR operations, but the definition for the NOT operation seems to be
safe.

Note that if one plugs just the values zero and one into these definitions, one
gets the same truth tables as one would expect from conventional Boolean logic.
This is known as the EXTENSION PRINCIPLE, which states that the classical
results of Boolean logic are recovered from fuzzy logic operations when all fuzzy
membership grades are restricted to the traditional set {0, 1}. This effectively
establishes fuzzy subsets and logic as a true generalization of classical set theory
and logic. In fact, by this reasoning all crisp (traditional) subsets ARE fuzzy
subsets of this very special type; and there is no conflict between fuzzy and crisp
methods.
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Appendix 2

Production Type Curve Analysis Methodology and
Evolution for the Determination of Restimulation

Production Potential in New York

Advanced Resources International, Inc.



Subject: Production type curve analysis methodology and evolution for the determination
of restimulation production potential in New Y ork.

Chautauqua County, New York Study — Background

In response to the success of the 1996 GTI evaluation of restimulating existing tight gas
sand wells, the New York State Energy Research and Development Authority
(NYSERDA) and GTI jointly sponsored a restimulation feasibility study patterned after
the aforementioned program. The deterministic methodology employed production data
analysis, artificial neural networks and engineering-based performance type curves as
well as advanced reservoir modeling techniques to identify restimulation candidates for
the Belden & Blake Corporation’s Chautaugua County, New York Medina Group gas
production field.

Chautauqua County, New York Study — Analysis Execution and Results

Chautauqua Sudy Data and Analysis. Belden & Blake had previously worked with ARI
on a 1998 NY SERDA-sponsored project to help determine if natural gas production and
reserve improvement opportunities existed in the Medina Group, located in Chautauqua
County, New York™% As part of this work, a systematic geologic and engineering
evaluation was performed, inclusive of well log petrophysical analysis, geological
mapping and advanced production type curve analysis, which provided net sand,
effective porosity, saturation as well as historic production and pressure data for this
study.

However, following areview of the existing production database, Schlumberger -
Holditch Reservoir Technologies (HRT) noted several discrepancies between a given
production well’s historic first date of production and the first record in the database.
Therefore, each production history was reviewed to standardize this difference, resulting
in the addition of up to one year of production history for alarge proportion of the wells.

Further, several wells experienced unexplained decreases and increasesin gas
production throughout their history. So, a the request of ARI, Belden & Blake
performed a critical review of six well files to characterize the nature of the aberrant
production data. ARI selected the six wells (the George Sheppard 142, William
Potkovick 376, Warren Smith 69, YMCA 523, Rizzo-Fay 151 and Roy Wilkens 343)
such that they covered each of the completion types (Whirlpool, Grimsby or
Commingled) while maintaining production behavior that was similar (in some fashion)
to several other wells. Major findings of this effort, which were generally applied across
thefield, are asfollows:

. Weélls have not been recompleted during their life.

. WEélls have not been refractured during their life.

. No additional compression seems to have been added to the field.

. Aberrant production increases were found to be due to flush production

following shut-in periods, the installation of artificial lift methods (casing
plunger, rabbit), swabbing or the use of soap.



. Aberrant production decline was found to be due to the lack of sufficient
energy to lift reservoir fluids, sand production and, in one case, a casing
leak. Subsequent remedial operations were able to increase production.

Type Curve Matching Methodology: While there were no recompletions, restimulations
or lease compression changes to consider, ARI recognized that the installation of
artificial lift methods, such as plunger lifts or rabbits, would effectively reduce the well's
bottomhole flowing pressure. So, each of the historical semi-log production and pressure
charts was reviewed in conjunction with available completion/wellbore data to identify
those wells that were impacted by this production enhancement method. To account for
its impact using production type curves, a match restart of the type curve was made at the
onset of artificial lift installation, using areduced flowing pressure consistent with the
provided historical data. Figure 1 shows a typical, restarted, production type curve
match. Appendix A contains the complete set of METEOR inputs and results for the
type curve matching effort, while Figures 2, 3, 4 and 5 show the results in a histogram
distribution format.

The median results were determined to be a permeability of 39 microdarcies, an
infinite conductivity fracture half-length of 20 feet, a drainage area of 77 acres and an
expected average reservoir pressure of 409 psiaon May 2001. Although there is no data
to verify the accuracy of the permeability and fracture half-length values, they appear
within reason. The median drainage area is also a reasonable number. However, given
the uncertainty of differential depletion between the Whirlpool and Grimsby formations
and the recent experience of encountering reduced pressure at infill drilling locations,
verification of this estimate is problematic.

Low net sand estimates for a small group of wells skewed the type curve results to
larger than expected values of permeability, fracture half-length and drainage area. For
example, the David Sutton #315 type curve match resulted in an estimated permeability
of 0.14 md, afracture half-length of 40 feet and a drainage area of 268 acres, based on 27
feet of net sand. Reviewing the distributions, these results were near the largest range for
each of the distributions, indicating contributing sand may have been underestimated. In
cases such as this, a Voronoi well spacing estimate could have provided a ceiling to the
drainage area, resulting in an increased reservoir thickness to reduce the drainage volume.

Restimulation and Added Compression Incremental Recovery Methodologies: To
determine the impact of restimulation on each of the wells, it was assumed that new
drainage area would not be created during the restimulation of an existing well. Further,
the well’ s full drainage area would be at the May 2001 (the estimated restimulation date)
average reservoir pressure, creating a more conservative assessment of the incremental
restimulation values. Note that these premises assume that both the Grimsby and
Whirlpool formations are depleted (with no differential depletion) and that no additional
pay thickness would be encountered within the variable sequence of the Medina Group.

Further, a practica expectation of restimulated fracture half-length was
determined to be 75 feet of infinite conductivity fracture half-length, which is equivalent
to askin factor of -5.0. So, if a predicted fracture half-length was already greater than 75
feet, no incremental recovery could be captured.



Figure 6 exhibits a typical restimulation candidate, the Eugene Chilcott #365
well. The predicted restimulation gas production stream is shown as a dark red line,
yielding an estimated 5-year incremental production of 6.0 MMcf, which ranked it as the
number nine candidate.

On the whole, the estimated 5-year incremental values were less than anticipated,
ranging from no expected improvement to 10.5 MMcf. This was due, in part, to very
little remaining differential pressure between the estimated average reservoir pressure and
sandface flowing pressure. In many cases, the opportunity existed to determine the
impact of a reduced sandface flowing pressure, which would act as added lease
compression.

So, the impact of added lease compression was explored for each of the
production wells. The lowest observed wellhead flowing pressure value, 50 psia, was
assumed to be the best field practice. Therefore, only those wells producing at pressures
larger than 50 psia were considered for improvement by this method.

Table 1 shows the top ten candidates for restimulation and added lease
compression, while Appendix B contains each well’s incremental computations for both
applications. The results showed that the top ten lease compression candidates could
garner an additional 27 MMcf of gas as compared to restimulation, suggesting it may be a
more cost effective approach for the operator.

Discussion:  Although the type curve matching results were quite reasonable,
implementing quality review checks, such as a Voronoi well spacing comparison with
drainage area, could have enhanced the outcome. Without an estimate of the Voronoi
well spacing, this confirmation point was bypassed, resulting in a handful of wells with
unreasonably large permeability, fracture half-length and drainage area val ues.

However, by assuming that the estimated drainage area and reservoir pressure
values would be unchanged by restimulation, conservative expectations can be made of
the incremental 5-year recovery. As shown in Figure 6, the expected production profile
has a production decline consistent with the preceding matches. Also, the predicted peak
gas rate, while an order of magnitude higher than the pre-restimulation rate, was found to
be considerably less than the match immediately prior to it, as might be expected in atrue
“field application.”

Although the expected incremental recoveries were found to be more redlistic,
especialy in a qualitatively sense, the 5-year volumes were considerably less than what
might have been expected. Therefore, it may be more cost effective for the operator to
pursue production improvements by other means, such as added lease compression. As
Table 1 showed, the number one lease compression response was achieved at the
William Willis #325 well, which predicted a 5-year recovery of about 25 MMcf by
reducing the lease production pressure from 350 psiato 50 psia.
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Table1 —Predicted Top Ten Well Recoveries dueto Restimulation and Added
L ease Compression

a) Rankings by Incremental Recovery due to Restimulation

TC Results Restim Inc.
Well # Well Name Formation k Xf A 5YrCum P,5/01 5Yr Cum 5Yr Cum
md ft acres Bcf psia Bcf MMcf
16|BEMUS, CECILE #214 Comingled 0.150 - 74 0.010 380 0.021 10.5
115(RAYNOR, WARD #323 Comingled 0.056 5 62 0.013 518 0.022 9.4
150|WELLMAN, DONALD #120 Comingled 0.007 - 21 0.003 716 0.011 7.6
146|VAN DETTE, ALBERT #356 Comingled 0.070 10 110 0.012 579 0.020 7.5
117|RENO, NORMAN #277 Comingled 0.055 7 131 0.011 467 0.019 7.3
87|MARRANO, ANTHONY #389 Comingled 0.023 25 73 0.007 570 0.015 7.2
110(POWELL, IRVING#077 Comingled 0.066 15 137 0.009 406 0.017 7.2
63|FURMANEK, ALOYSIOUS #144 Comingled 0.090 9 293 0.013 426 0.019 6.1
34|CHILCOTT, EUGENE #365 Comingled 0.325 20 104 0.022 283 0.028 6.0
149|WEBSTER CASTLE INN #015 Grimsby 0.140 15 104 0.015 365 0.021 6.0
b) Rankings by Incremental Recovery due to Added Lease Compression
TC Results Compression Inc
Well # Well Name Formation k Xf A 5YrCum P,5/01 5Yr Cum 5Yr Cum
md ft acres Bcf psia Bcf MMcf

154 WILLS, WILLIAM #325 Comingled 0.150 15 62 0.002 366 0.028 254
97 MILLER, MORRIS #433 Comingled 0.210 35 109 0.005 279 0.027 21.3
94 MIKULA, JOSEPH #152 Grimsby 0.075 25 259 0.012 471 0.027 15.0
140 SUTTON, DAVID #315 Comingled 0.140 25 268 0.017 440 0.032 147
112 PRZYBYLSKI, LEONARD #113 Comingled 0.110 15 255 0.009 390 0.021 125
75 JOSEPHSON, WALFRED #329 Grimsby 0.090 15 109 0.005 423 0.017 11.3
145 VAN DETTE, ALBERT #339 Comingled 0.065 13 77 0.008 462 0.019 10.7
153 WILKENS, ROY #343 Comingled 0.100 17 133 0.013 407 0.021 7.8
52 DENNISON, WILBER #062 Comingled 0.090 20 133 0.008 359 0.016 7.7
82 LANFORD, C. #240 Comingled 0.105 14 43 0.004 303 0.011 7.4




Appendix A

Chautauqua County, New York Study I nputs and Results
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Appendix B

Chautauqua County, New York Study Restimulation and Added Compression
Results

NY SERDA Appendix B\Chautaugua County Restimulation Incrementals.xlg




	Executive Summary
	Introduction
	Conclusions
	Recommendations
	Discussion
	Database Construction
	Production Indicator and Recovery Factors
	Stimulation Candidates

	References
	Appendices
	Appendix 1.pdf
	FINAL REPORT
	Feasibility of Gas Well Restimulation in New York State

	Appendix 2.pdf
	Chautauqua County, New York Study – Background
	Chautauqua County, New York Study – Analysis Execution and Results
	Chautauqua Study Data and Analysis:  Belden & Blake had previously worked with ARI on a 1998 NYSERDA-sponsored project to help determine if natural gas production and reserve improvement opportunities existed in the Medina Group, located in Chautauqua Co
	References




