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1 Executive Summary 

Schlumberger Holditch – Reservoir Technologies Consulting Services (H-RT), with subcontract 
support provided by Advanced Resources International, Inc. (ARI), and Intelligent Solutions, Inc. 
(IS), performed a study to develop a restimulation candidate selection process for various wells 
operated by Belden & Blake Corporation located in Chautauqua County, New York State. 

One hundred fifty nine wells producing from the Lower Silurian Medina Group’s Grimsby and 
Whirlpool sandstones located in Chautauqua County, NY have been evaluated using three different 
methods to quantify the restimulation potential of these wells.  H-RT performed a Moving Domain 
Analysis  (MDA ), IS applied a virtual intelligence neural network, and ARI utilized type curve 
analysis techniques.  These differing approaches and their results are discussed throughout this 
report. 

The primary objective of this study is to evaluate production data and determine which, if any wells 
have incremental production potential via a rework or additional lease compression.  Most of the 
wells in this study have approximately twenty-three years of production history.  

Utilizing our MDA  and recovery factor calculations, we have determined that the following 
wells are good candidates for recompletion, Table 1.  These candidate wells have 5-year 
cumulative production values significantly lower than expected based upon the median production 
value of the wells within its domain.  This list is sorted by the descending difference in production 
volume between a well’s actual 5-year cum versus the median of 5-year cumulative production for 
all wells within its domain.  Wells with higher differences should have higher incremental 
recoverable reserves through restimulation.  Recovery factors were also considered based upon 
EUR’s from decline curves, 80-acre maximum drainage, and net pay (height, porosity, and 
extrapolated Sw). 

Table 1 – H-RT list of restimulation candidates 

 
 

Well_Name 

5 yr 
Cumulative 
Gas (Mscf) 

Domain 
Median 
(Mscf) 

 
Difference 

(Mscf) 

Recovery 
Factor (%) 

MOTRYNCZUK, PAUL     #382 44,580 89,907 45,327 23% 
SHEPARD, GEORGE     #297 20,063 64,631 44,568 40% 

SUPPO, PETER     #073 8,613 40,065 31,452 20% 
STARR, HERB     #151 8,106 35,658 27,552 2% 

CRANDALL, RICHARD     #327 15,300 41,900 26,600 6% 
DEAN, LUTHER     #017 6,242 28,133 21,891 4% 

RAYNOR, WARD     #386 10,515 31,959 21,444  
BROWN, CHARLES     #028 37,280 57,661 20,381 92% 

BERGER, CARL     #288 6,694 23,222 16,528 6% 
LONGHOUSE, ARTHUR     #064 11,892 28,250 16,358 25% 

BEARDSLEY, JOHN     #134 12,446 25,525 13,079 9% 
JOHNSTON, CHARLES     #304 17,100 29,362 12,262 7% 

BARKER, JAMES     #338 5,280 16,392 11,112 86% 
DARBY, LEON     #336 7,174 17,892 10,718 14% 

YONKERS, FRANK     #137 12,680 22,448 9,768 17% 
HOWARD, VELMA     #320 3,959 11,901 7,942 27% 

WELLMAN, DONALD     #120 5,115 11,023 5,908 5% 
 

 



 

Page 2 

Intelligent Solution’s list of recompletion candidates shown below in Table 2. 

Table 2 – IS list of top 25 restimulation candidates 

Final Ranking 
  Ranking 

Rank Well Name Last Month 
Rate 

Reservoir 
Quality 

Three-Input 
System 

1 Suess, George #430 1 2 4 
2 Wills, William #325 13 3 2 
3 Winchell, Francis #303 16 5 3 
4 Palmer, Lonnie #074 17 8 1 
5 Martin, David #300 5 1 21 
6 Augustinians of the Assum #103 6 14 14 
7 McLarney, Jane #102 19 13 5 
8 Suppo, Jeter #073 15 18 9 
9 Scholl, Mary A. #115 14 21 12 

10 Smith, Warren #069 23 11 13 
11 Colt, Alvin #024 11 20 22 
12 Smith, M. #1 #245  6 8 
13 Cranston, Claude #311  4 11 
14 Village of Brocton #299  17 7 
15 Dubois, Florence #079  16 10 
16 Cornell, Gordon #423  12 19 
17 Chilcott, Eugene #365 20  18 
18 Barber #2 24  15 
19 Van Dette, Albert #356  22 17 
20 Bemus, Cecile #214  23 24 
21 Crandall, Richard #326  25 25 
22 Straight, Frank #140   16 
23 Miller, Morris #433   20 
24 Josephson, Walfred #329   21 
25 Zook, Marvin #276   23 
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ARI’s list of candidate wells is shown below in Table 3.  

Table 3 – ARI list of restimulation candidates 

a)  Rankings by Incremental Recovery Due to Restimulation 

   TC Results Restim Inc. 
Well 
No. 

Well 
Name 

 
Formation 

 
k 

(md) 

 
Xf 
(ft) 

 
A 

(acres) 

5 Yr 
Cum 
(Bcf) 

P 
5/01 

(psia) 

5 Yr 
Cum 
(Bcf) 

5 Yr 
Cum 

(MMcf) 
16 Bemus, Cecile, #214 Comingled 0.150 - 74 0.010 380 0.021 10.5 

115 Raynor, Ward, #323 Comingled 0.056 5 62 0.013 518 0.022 9.4 
150 Wellman, Donald #120 Comingled 0.007 - 21 0.003 716 0.011 7.6 
146 Van Dette, Albert #356 Comingled 0.070 10 110 0.012 579 0.020 7.5 
117 Reno, Norman #277 Comingled 0.055 7 131 0.011 467 0.019 7.3 
87 Marrano, Anthony #389 Comingled 0.023 25 73 0.007 570 0.015 7.2 

110 Powell, Irving #077 Comingled 0.066 15 137 0.009 406 0.017 7.2 
63 Furmanek, Aloysious #144 Comingled 0.090 9 293 0.013 426 0.019 6.1 
34 Chilcott, Eugene #365 Comingled 0.325 20 104 0.022 283 0.028 6.0 

149 Webster Castle Inn #015 Grimsby 0.140 15 104 0.015 365 0.021 6.0 
 

b)  Rankings by Incremental Recovery Due to Added Lease Compression 

   TC Results Restim Inc. 
Well 
No. 

Well 
Name 

 
Formation 

 
k 

(md) 

 
Xf 
(ft) 

 
A 

(acres) 

5 Yr 
Cum 
(Bcf) 

P 
5/01 

(psia) 

5 Yr 
Cum 
(Bcf) 

5 Yr 
Cum 

(MMcf) 
154 Wills, William #325 Comingled 0.150 15 62 0.002 366 0.028 25.4 
97 Miller, Morris #433 Comingled 0.210 35 109 0.005 279 0.027 21.3 
94 Mikula, Joseph #152 Grimsby 0.075 25 259 0.012 471 0.027 15.0 

140 Sutton, David #315 Comingled 0.140 25 268 0.017 440 0.032 14.7 
112 Przybylski, Leonard #113 Comingled 0.110 15 255 0.009 390 0.021 12.5 
75 Josephson, Walfred #329 Grimsby 0.090 15 109 0.005 423 0.017 11.3 

145 Van Dette, Albert #339 Comingled 0.065 13 77 0.008 462 0.019 10.7 
153 Wilkens, Roy #343 Comingled 0.100 17 133 0.013 407 0.021 7.8 
52 Dennison, Wilber #062 Comingled 0.090 20 133 0.008 359 0.016 7.7 
82 Lanford, C. #240 Comingled 0.105 14 43 0.004 303 0.011 7.4 
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2 Introduction 

Historical development of the study area and its relatively shallow reservoirs began in the late 
1880’s and the wells were produced naturally, or with only minimal nitroglycerine stimulation.  
Production is from the lower Silurian Medina group’s Grimsby and the Whirlpool formations, 
which consists of interbedded sandstones, siltstones, and shales. The Medina group is further 
subdivided into the Grimsby sandstone, Cabot Head shale, and Whirlpool sandstone that 
unconformably overlies the Upper Ordovician Queenston shale.  These formations provide a 
stratigraphic play with production primarily related to porosity and permeability variations within 
the reservoir.  Local variations within the structural setting may influence production in some 
areas, but to a considerably lesser extent. All of the wells were stimulated similarly (e.g. proppant 
amounts, nitrogen volumes, fluid rate, etc.) in the Lower Silurian Medina group Grimsby and 
Whirlpool sandstones, with perforations ranging from 2,300 to 3,400 feet deep.  Typical treatments 
utilized gelled water with nitrogen assist, averaging 623 barrels of fluid, 5,470 pounds of proppant, 
and 18 perforations. 

In 1996, the Gas Research Institute (GRI) [currently the Gas Technology Institute (GTI)] 
authorized an evaluation to study potential benefits from the restimulation of existing natural gas 
wells.  This analysis estimated that over one trillion cubic feet of natural gas reserves and up to 
$500 million in benefits could potentially be derived from successful recompletion programs 
conducted in the tight gas reservoirs of South Texas, Mid-Continent, and Rocky Mountain regions 
of the United States.  Case studies have subsequently shown that restimulation benefits may also be 
significant in low permeability unconventional reservoirs similar to the Grimsby and Whirlpool 
sandstones in New York State.   

Belden & Blake Corporation (B&B) worked with Advanced Resources International, Inc. (ARI) in 
1998 to determine the magnitude of reserve and production enhancement opportunities that existed 
in their wells situated in this area of New York, Fig. 1.  The New York State Energy Research and 
Development Authority (NYSERDA) and GTI jointly sponsored a feasibility study modeled after 
the 1996 GRI evaluation.  Methodology used included production data analysis, artificial neural 
networks, type curve construction, and reservoir modeling.  These tools have helped to identify 
restimulation candidates for Belden & Blake’s Chautauqua County, NY Medina Group field.  Our 
evaluation applies and enhances the restimulation feasibility methods developed by GRI in 1996 to 
these formations, and was requested jointly by NYSERDA, GTI, and B&B. 
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Figure 1 – Study area location map 
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3 Conclusions 

Based on the worked performed by H-RT and our subcontractors, we conclude that: 

1)  A significant number of recompletion candidates are available for Belden & Blake’s review. 

2) Varying methodologies of identifying recompletion candidates often identify a core group of the 
same wells, thus providing added confidence in the selection of these wells for recompletion. 
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4 Recommendations 

Based on the results of this study, H-RT makes the following recommendations: 

1) Belden & Blake should review the three lists of recompletion candidates, determine what 
restimulation options are available, and estimate their associated costs.   

2) Perform economic analyses on the selected recompletion candidates based upon expected 
stimulation costs, anticipated production increase and additional operating costs, if any. 

3) Upon finalization and execution of an actual recompletion, estimate future production rates and 
reserves. 

 



 

Page 8 

5 Discussion 

Work performed on this project was undertaken by H-RT as the lead contractor, with IS and ARI 
providing sub-contract support.  Discussion of our approach and result obtained are presented 
below.  The approach and results of IS and ARI are presented in Appendices 1 and 2 to this report. 

 

5.1 Database Construction 

In 2000, Belden & Blake provided ARI with production data, completion methods, and well 
information.  ARI estimated net pay thickness, created a preliminary database, and presented it to 
H-RT for use in the study.  We organized and uploaded this information into various Microsoft 
ACCESSTM databases and EXCEL™ spreadsheets, and then reviewed and quality checked it for 
integrity.  Table 4 shows examples of information used for this study. 

Table 4 – Examples of data used for this study 

Well Permit Number Latitude and Longitude 

KB Elevation Well Number 

Well Name Operator 

Spud Date Completion Date 

Date of First Production Total Depth 

Completed Intervals and Names Net Pay 

Stimulation Type (by stage and total) Cumulative Production 

Average Sand (by stage and total) Best 12-Month Gas Production 

Injection Rate by Stage Shut-In Pressure 

Production Data by Month Number of Stimulation Stages 

Best Production Month Average Treating Pressure by Stage 

Average Flowing Pressure (best 6- and 
12-months) 

Average Sand Concentration (by stage 
and total) 

 Sand and Volume of Fluid Used in 
Stimulation (by stage and total) 

 

Fig. 2 shows that initial drilling dates for these wells are between 1973 and 1996, though 154 wells 
have online dates between 1974 and 1977 (12 wells in 1974, 44 wells in 1975, 80 wells in 1976, 
and 18 wells in 1977). 
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Figure 2 – Study wells versus year drilled 
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5.2 Production Indicator and Recovery Factors 

To investigate the usefulness of different primary production indicators in identifying potentially 
recoverable incremental reserves, H-RT evaluated 5-year cumulative gas, 10-year cumulative gas, 
and highest twelve-month (q12) volumes relative to dates of first production (DOFP).  Early in our 
study it became apparent that the 5-year cumulative was the most helpful in recognizing 
restimulation candidates with the use of MDA.  Fig. 3 is a color-filled contour map of these 5-year 
values.  Note that the areas in red are regions of higher volumes. 

 

Figure 3 – Color-filled contour map of 5-year cumulative gas production 

42.17.30 

42.20. 0 

42.22.30 

- 79.27.30 - 79.25. 0 - 79.22.30 - 79.20. 0 - 79.17.30

42.17.30

42.20. 0

42.22.30

- 79.27.30 - 79.25. 0 - 79.22.30 - 79.20. 0 - 79.17.30

      kilometers1. 0. 1. 2. 3. 4. 5.

      miles0.2 0. 0.2 0.4 0.6 0.8 1.

Scale  1:69000. HOLDITCH - RESERVOIR TECHNOLOGIES

NYSERDA RE-STIM PROJECT
5 YEAR CUM

Paul Zyglowicz 5YR_LT.GPF 6/19/00

Scale  1:69000.

3101309616

3101309868

3101309961

3101309962

3101310026

3101310027

3101310032

3101310033

26

3101310085

3101310091

3101310109

31013101113101310145

3101310146

33
3101310173

3101310174

3101310253

3101310254

3101310288

3101310298

40

3101310344

3101310393

43

44

31013104563101310460

3101310461

3101310471

49

3101310530

3101310531

3101310554

55

56

57

3101310605

3101310658

3101310659

3101310756

65

3101310877

3101310878

68

3101310883

3101310884

3101310894

3101310895

3101310919

3101310923
3101310937

3101310944

77

3101310956

3101310957

3101310967

3101311004

31013110053101311021

3101311022

3101311059

3101311094

3101311095

3101311111

3101311112

3101311118 97

3101311120

3101311138

3101311146

3101311153

3101311154

3101311169

3101311181

3101311205

3101311266 3101311267

3101311268

110

111

3101311296

3101311297

3101311304

3101311305
3101311316

3101311339

3101311340

3101311341

3101311342

3101311352

3101311355

3101311372

3101311373

129

3101311406

3101311415

3101311424

3101311426

3101311427

3101311431

3101311482

3101311485
3101311487

3101311488

3101311489

146

3101311501

3101311505

3101311514

152

3101311532

3101311538

160

3101311540

3101311541

3101311556

164

3101311562

3101311563

3101311564

168

169

3101311584

3101311585

3101311596

3101311603

3101311604

3101311605

177

3101311614

3101311615

3101311625

3101311634

3101311635

3101311636

187

3101311638

3101311648

3101311649

3101311650

194

195

3101311671

3101311696

3101311697

3101311698

3101311711

3101311712

204

3101311714

3101311715

3101311716

3101311717

3101311718

3101311751

3101311752

214

3101311765

3101311766

217

3101311793

3101311866

3101311867
3101311868

3101311886
3101311887

3101311889

3101311890
3101311892

3101311893

3101311897

3101311900

3101311901

3101311902

237

3101311904

3101311905

3101311907

3101311940

250

251

3101312413

3101312414

3101312458
3101312481

274

275

276 277

280

3101313630

284
285

310131475

299

301

310132079

303

310132085

304

305

307

310132119

308

309

312

313

314

315

316

317

318

323

324

3101322584

3101322585

3101322587

329

3101322638

3101322731

3101322737

310133167

310133173

310133176

310133177

310133178
310133179

310133180

310134156

310134178

310134770

331

 

 

For recovery efficiency calculations, we used Belden & Blake’s EUR as the best measure of 
ultimate well performance, which assumed an 80-acre maximum drainage area per well, and net 
sand height, porosity, and extrapolated Sw values.  From these assumptions, we determined that 
17,312 acres are being drained with an original gas-in-place of 50 Bscf.  Of this total gas, 15.6 Bscf 
is recoverable resulting in a recovery efficiency of 31.3%.  Fig. 4 is a map of the study well 
locations with an 80-acre maximum spacing ring surrounding each well. 
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Figure 4 – Study well locations and 80-acre maximum drainage boundaries 
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Moving Domain Analysis  (MDA ) is a technique to rapidly process production data and 
completion information and aids in determining reserve distributions and infill potential.  It 
essentially analyzes a mosaic of overlapping localized studies (domains) and requires only minimal 
data such as latitude/longitude of each well, and monthly production information.  Each of the 159 
wells has been compared with offset wells in its vicinity based upon the 5-year cumulative 
production indicator.  We have statistically determined that this is a reliable short-term indicator of 
long-term well performance and is influenced by reservoir quality, completion, and operating 
conditions. 

Fig. 5 is a chart of date of first production versus 5-year cumulative production for the wells in the 
study, and shows that these values range from zero to about 225 million standard cubic feet 
(MMscf), though most are 75 MMscf or less. 
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Figure 5 – Date of first production versus 5-year cumulative production 
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During the MDA  process, we also plotted 5-year cumulative on a chart’s y-axis, versus dates of 
first production on an x-axis.  We did this for each well (target well) and all offsets within its 
domain.  This enabled us to identify target wells that were underperforming relative to their offsets.  
Fig. 6 is an example of a well producing at a rate lower than we would expect based upon wells in 
its domain, and is potentially a candidate for recompletion due to underperformance.  

Figure 6 – Example of underperforming well 
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Depletion can also be recognized with the use of MDA and viewing 5-year cumulative figures 
versus DOFP.  An indication that depletion may be occurring within a domain is a negative slope 
of a best-fit linear regression trend line of this data.  Fig. 7 shows depletion over time.  Note that 5-
year values become lower as DOFP’s move forward in time.  

Figure 7 – Example of depletion based on 5-year cumulative production  
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5.3 Stimulation Candidates 

H-RT used a Moving Domain Analysis  to calculate each wells expected 5-year cumulative based 
upon the wells within its domain versus its actual 5-year production history.  Wells below the norm 
may be restimulation candidates.  Table 5 is a list showing our top candidates. 

Table 5 – H-RT list of restimulation candidates 

Well_Name 5 yr 
Cumulative 
Gas (Mscf) 

Domain 
Median 
(Mscf) 

Difference 
(Mscf) 

Recovery 
Factor (%) 

MOTRYNCZUK, PAUL     #382        44,580       89,907        45,327  23% 
SHEPARD, GEORGE     #297        20,063       64,631        44,568  40% 

SUPPO, PETER     #073          8,613       40,065        31,452  20% 
STARR, HERB     #151          8,106       35,658        27,552  2% 

CRANDALL, RICHARD     #327        15,300       41,900        26,600  6% 
DEAN, LUTHER     #017          6,242       28,133        21,891  4% 

RAYNOR, WARD     #386        10,515       31,959        21,444   
BROWN, CHARLES #028        37,280       57,661        20,381  92% 
BERGER, CARL     #288          6,694       23,222        16,528  6% 

LONGHOUSE, ARTHUR     #064        11,892       28,250        16,358  25% 
BEARDSLEY, JOHN     #134        12,446       25,525        13,079  9% 

JOHNSTON, CHARLES     #304        17,100       29,362        12,262  7% 
BARKER, JAMES     #338          5,280       16,392        11,112  86% 

DARBY, LEON     #336          7,174       17,892        10,718  14% 
YONKERS, FRANK     #137        12,680       22,448          9,768  17% 
HOWARD, VELMA     #320          3,959       11,901          7,942  27% 

WELLMAN, DONALD     #120          5,115       11,023          5,908  5% 
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IS applied a virtual intelligence neural network to identify wells with restimulation potential 
utilizing neural nets, genetic algorithms, engineering expertise, and fuzzy logic.  Parameters such 
as 5-year cumulative, reservoir quality index, last production rate, were processed. 

The reservoir quality index is equal to: 

(net porosity * net pay thickness) Medina + 2(net porosity * net pay thickness) Whirlpool 

Number of perforations 

The Whirlpool has been given more weight than the Medina in this equation. IS’s recompletion  
candidates are shown in Table 6.  Further detail is presented in their attached final report. 

 

Table 6 – IS list of top 25 restimulation candidates 

Final Ranking 
  Ranking 

Rank Well Name Last Month 
Rate 

Reservoir 
Quality 

Three-Input 
System 

1 Suess, George #430 1 2 4 
2 Wills, William #325 13 3 2 
3 Winchell, Francis #303 16 5 3 
4 Palmer, Lonnie #074 17 8 1 
5 Martin, David #300 5 1 21 
6 Augustinians of the Assum #103 6 14 14 
7 McLarney, Jane #102 19 13 5 
8 Suppo, Jeter #073 15 18 9 
9 Scholl, Mary A. #115 14 21 12 

10 Smith, Warren #069 23 11 13 
11 Colt, Alvin #024 11 20 22 
12 Smith, M. #1 #245  6 8 
13 Cranston, Claude #311  4 11 
14 Village of Brocton #299  17 7 
15 Dubois, Florence #079  16 10 
16 Cornell, Gordon #423  12 19 
17 Chilcott, Eugene #365 20  18 
18 Barber #2 24  15 
19 Van Dette, Albert #356  22 17 
20 Bemus, Cecile #214  23 24 
21 Crandall, Richard #326  25 25 
22 Straight, Frank #140   16 
23 Miller, Morris #433   20 
24 Josephson, Walfred #329   21 
25 Zook, Marvin #276   23 
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Decline curve analysis was used by ARI to recognize underperforming wells and its list is 
presented in Table 7.  ARI used type curve matching to distinguish wells that potentially offer 
incremental reserves.  Since none of the study wells had been recompleted, production profiles of 
wells that previously had artificial lift systems installed were evaluated and used as models for 
representative type curves. 

Table 7 – ARI list of restimulation candidates 

a)  Rankings by Incremental Recovery Due to Restimulation 

   TC Results Restim Inc. 
Well 
No. 

Well 
Name 

 
Formation 

 
k 

(md) 

 
Xf 
(ft) 

 
A 

(acres) 

5 Yr 
Cum 
(Bcf) 

P 
5/01 

(psia) 

5 Yr 
Cum 
(Bcf) 

5 Yr 
Cum 

(MMcf) 
16 Bemus, Cecile, #214 Comingled 0.150 - 74 0.010 380 0.021 10.5 

115 Raynor, Ward, #323 Comingled 0.056 5 62 0.013 518 0.022 9.4 
150 Wellman, Donald #120 Comingled 0.007 - 21 0.003 716 0.011 7.6 
146 Van Dette, Albert #356 Comingled 0.070 10 110 0.012 579 0.020 7.5 
117 Reno, Norman #277 Comingled 0.055 7 131 0.011 467 0.019 7.3 
87 Marrano, Anthony #389 Comingled 0.023 25 73 0.007 570 0.015 7.2 

110 Powell, Irving #077 Comingled 0.066 15 137 0.009 406 0.017 7.2 
63 Furmanek, Aloysious #144 Comingled 0.090 9 293 0.013 426 0.019 6.1 
34 Chilcott, Eugene #365 Comingled 0.325 20 104 0.022 283 0.028 6.0 

149 Webster Castle Inn #015 Grimsby 0.140 15 104 0.015 365 0.021 6.0 
 

b)  Rankings by Incremental Recovery Due to Added Lease Compression 

   TC Results Restim Inc. 
Well 
No. 

Well 
Name 

 
Formation 

 
k 

(md) 

 
Xf 
(ft) 

 
A 

(acres) 

5 Yr 
Cum 
(Bcf) 

P 
5/01 

(psia) 

5 Yr 
Cum 
(Bcf) 

5 Yr 
Cum 

(MMcf) 
154 Wills, William #325 Comingled 0.150 15 62 0.002 366 0.028 25.4 
97 Miller, Morris #433 Comingled 0.210 35 109 0.005 279 0.027 21.3 
94 Mikula, Joseph #152 Grimsby 0.075 25 259 0.012 471 0.027 15.0 

140 Sutton, David #315 Comingled 0.140 25 268 0.017 440 0.032 14.7 
112 Przybylski, Leonard #113 Comingled 0.110 15 255 0.009 390 0.021 12.5 
75 Josephson, Walfred #329 Grimsby 0.090 15 109 0.005 423 0.017 11.3 

145 Van Dette, Albert #339 Comingled 0.065 13 77 0.008 462 0.019 10.7 
153 Wilkens, Roy #343 Comingled 0.100 17 133 0.013 407 0.021 7.8 
52 Dennison, Wilber #062 Comingled 0.090 20 133 0.008 359 0.016 7.7 
82 Lanford, C. #240 Comingled 0.105 14 43 0.004 303 0.011 7.4 
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BACKGROUND 
 
In 1996, GRI commissioned an evaluation of the benefits that could be realized 
from restimulation of existing gas wells.  This analysis suggested that over 1 Tcf 
of reserves and up to $500 million in benefits could be derived from successful 
restimulation programs in the tight gas reservoirs of South Texas, Mid-continent, 
and Rocky Mountain Regions of the United States.  Additionally, case studies 
have shown that restimulation benefits are greatest in low permeability, 
unconventional resources such as the tight Medina and Whirlpool sands of 
southwest New York State.  This project is designed to apply the methodology 
employed in GRI restimulation projects being performed in the Frontier sand of 
Wyoming, Mesaverde sand of Colorado, Wilox/Lobo sand of South Texas, and 
Cotton Valley sands of East Texas to the Medina/Whirlpool sands of western 
New York. 
 
This report summarizes the efforts by Intelligent Solutions, Inc. to apply the 
intelligent systems approach to the Medina/Whirlpool sands of western New 
York, and consequently select and rank the restimulation candidates in this 
formation. 
 
The report will start by a brief explanation of the methodology developed by the 
Intelligent Solutions, Inc. for restimulation candidate selection, and then will cover 
the application of this methodology to the Medina/Whirlpool sands of western 
New York. 
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METHODOLOGY 
 
This section summarizes the intelligent systems approach developed by 
Intelligent Solutions Inc. for the restimulation candidate selection. Figure 1 is a 
flowchart that represents the process developed for this methodology. This figure 
is used as a road map to explain the intelligent systems methodology. 
 
 

 
 

Figure 1. Virtual intelligence approach for restimulation candidate selection. 
 
 
Three steps are involved for selecting restimulation candidates using virtual 
intelligence techniques. Before starting the process, however, a data set that 
includes all the relevant available data for the formation being studied should be 
compiled. The data usually includes four major categories. First the general 
information about each well. This can include the location coordinates of the 
wells, an indication of the depth, and the date the well was put into production. 
Second category addresses reservoir quality. Information in this category may 
include net pay, porosity, saturation, permeability (if available) and any kind of 
pressure indicator. If the reservoir is consists of several layers, it helps to have 
the above information on a per layer (zone) basis. The third category is the 
stimulation-related data. This data may include information on the type and 
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amount of proppant that has been used, type and amount of fracturing fluid, 
perforation density and information on the number of zones and layers involved 
in each frac job in the event of a layered reservoir. The last category includes 
mainly production data. This data is used to calculate five-year cumulative 
production or EUR for each well. The five-year cumulative production or EUR 
would be the production indicator to which the above parameters are correlated.  
 
The data that needs to be compiled can usually be found in well files and publicly 
available databases. Once the data set has been compiled, the next step is to 
apply the virtual intelligence approached. The first step of this process calls for 
the use of neural networks.  
 
 
STEP 1: Neural Network Analysis 
 
Neural networks are used to build a representative model of well performance in 
the particular reservoir being studied. The data is used as input-output pair to 
train the neural network. The first three categories – well information, reservoir 
quality and stimulation related data - are used as input and are coupled with the 
fourth category – production data – as output.  
 
Since it is impractical to model such a complex process using the conventional 
modeling techniques – mathematical modeling – neural networks can provide a 
valuable insight into the intricacies of interaction of the formation with the 
hydraulic fracturing designs and implementations. Once a reasonably accurate 
and representative neuro-model of the stimulation processes has been 
completed for the formation under study, more analysis can be performed. These 
analyses may include the use of the model in order to answer many “what if” 
questions that may rise.  Furthermore, the model can be used to identify the best 
and worst completion/stimulation practices in the field. 
 
The ideal situation for using a neural model in restimulation candidate selection is 
when some restimulation jobs have been performed and some known results 
exists. These results can be used during the model building process to calibrate 
the accuracy of the model. In the case that such restimulation jobs do not exist, a 
surrogate method should be used in an attempt to deduce the maximum 
information from the available data. 
 
This brings us to the second step of the methodology. Now that we have a 
representative model of the stimulation process for the formation being studied, 
how can we use it to identify in which wells restimulation potential exist? Once 
the neural model has identified the best practices, each hydraulic fracture 
treatment can be tested to examine if the stimulation job that had been 
performed was the best design for that particular well at the time it was 
implemented. The degree of departure from the optimum design is translated to 
the missed production opportunity, which in turn can be used as a proxy for 
restimulation potential.   



 

 6

 
 
STEP 2: Genetic Optimization 
 
Genetic algorithms are used to perform this section of the analysis. The neural 
networks developed in the first step are used as the “fitness function” for the 
genetic algorithm routines.  
 
The process of identifying the missed production opportunities - because of less 
than optimum hydraulic fracturing treatments - is as follows. The neuro-model 
developed in the first section of the methodology is able to provide an output 
(e.g., five-year cum.) based on the input to the network, namely, stimulation 
design, well information and reservoir quality for each particular well. Among 
these input categories only stimulation design parameters are controllable. Well 
information and reservoir quality is obviously beyond the engineer’s control. 
Therefore, the genetic algorithm is set to search among all the possible 
combinations of the stimulation parameters and identify the most optimum 
combination. The most optimum combination of stimulation parameters are 
defined as the combination that for any particular well (based on the well 
information and reservoir quality) provides the highest output (five-year 
cumulative production  - 5YCum). The difference between the 5YCum from the 
optimum stimulation treatment and the actual 5YCum produced by the well is 
interpreted as the production potential that may be recovered by restimulation of 
that well. This incremental production is the surrogate variable that was 
mentioned in the previous section.  
 
This analysis concludes the second part of the methodology. Furthermore, the 
candidate selection process is not entirely based on the outcome of the genetic 
algorithms.  
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STEP 3: Fuzzy Decision Support System 
 
The third and final step of the restimulation candidate selection methodology 
incorporates a fuzzy decision support system. This fuzzy expert system uses the 
information provided by the neural networks and genetic algorithms. The expert 
system then augments those findings with information that can be gathered from 
the expert engineers who have worked on that particular field for many years in 
order to select the best restimulation candidates. Keep in mind that the 
information provided to the fuzzy expert system may be different from formation 
to formation and from company to company. This part of the methodology 
provides the means to capture, maintain and use some valuable expertise that 
will remain in the company even when  engineers are transferred to other 
sections of the company where their expertise is no longer readily available. The 
fuzzy expert system is capable of incorporating natural language to process 
information. This capability provides maximum efficiency in using the imprecise 
information in less than certain situations. A typical rule in the fuzzy expert 
system that will help engineers in ranking the restimulation candidates can be 
expressed as follows: 
 
If the well shows a high potential for an increase in 5YCum, And has a 
moderate pressure, And has a low proppant volume for the net pay completed, 
Then this well is a good candidate for restimulation. 
 
A truth-value is associated with every rule in the fuzzy expert system developed 
for this methodology. The process of making decisions using fuzzy subsets using 
the parameters and relative functional truth-values as rules provides the means 
of using approximate reasoning in making decisions. This process is known to be 
one the most robust methods in developing high-end expert systems in many 
industries.   
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RESULTS AND DISCUSSIONS 
 
S. A. Holditch Reservoir Technology was in charge of gathering, compiling and 
organizing the available data into a database format. Once the data was received 
from S. A. Holditch Reservoir Technology some preliminary data processing was 
carried out in order to develop a better understanding of the nature of the 
available data. This part of the data processing mainly included conventional 
statistical analysis. Also some preprocessing of the data was required to prepare 
it for use by the remaining of the analysis. 
 
Table 1 shows the data extracted from the database to be used for the analysis 
in this study. 

 
Table 1. Data used for the analysis. 

Category Parameter Definition
General API_Number Well API number

WELL NAME Well name
Location X x coordinate of the well

Y y coordinate of the well
UG_Top Depth to the top of Upper Grimsby
WP_Top Depth to the top of Whirlpool

Reservoir Quality Net_PhiH_TG Net porosity, net pay product for all of Grimsby
Net_PhiH_WP Net porosity, net pay product for all of Whirlpool

Completion MEDINA PERFS TOP Depth to the top of the Medina perforations
MEDINA PERFS BOTTOM Depth to the bottom of the Medina perforations
NUMBER OF PERFS  MEDINA Number of perforations in Medina
PERF DIAMETER Diameter of perforations
WHIRLPOOL PERFS TOP Depth to the top of the Whirlpool perforations

Stimulation BBL WATER MEDINA Barrels of water used during stimulation
MMCF N2 MEDINA MMCF of Nitrogen used during the stimulation
SKS SAND MEDINA Sacks of sand used during the stimulation
ISIP MEDINA Initial Shut-In Pressure
AVE TREATING RATE MEDINA Average treatment rate
TREATING PRESS MEDINA Average treatment pressure

Production Prior_Production_Gas Cumulative gas produced
Remaining_Gas Remaining gas to be produced
Ultimate_Gas Estimated Ultimate Recovery
Gas_Months_Prod Number of months the well was on production
Gas_Last_1_Months Last one month of gas production
Gas_Last_3_Months Last three months of gas production
Gas_Last_6_Months Last six months of gas production
Gas_DOFP Date of the first gas production
Gas_DOLP Date of the last gas production

OUTPUT Gas_Best_12_Months Best 12 months of gas production
Gas_5-Yr_Cum Five year cumulative production
Gas_10-Yr_Cum Ten year cumulative production
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Please note that the above data was extracted from the database after the 
completion of the preliminary statistical analysis. This does not necessarily mean 
that all of the parameters shown in the Table 1 were used as input to the neural 
network. As a matter of fact after further analysis some of the parameters shown 
in Table 1 were eliminated from the list of parameters used in the final neural 
network predictive model. 
 
STEP 1: Neural Network Analysis 
 
In this section the result of neural network analysis will be presented. The 
analysis started with identifying the most influential category of the input 
parameters in the data set. The parameters in the data set were divided into five 
categories such as location, reservoir quality, completion, stimulation, and 
production. The results of this analysis will indicates the chances for the success 
of a restimulation program. The higher the influence of a category of parameters, 
the higher will be the chances for a successful restimulation program if the 
parameters of that category are altered in a positive manner. It should be 
indicated that the word "success" is being used in a relative context. Figure 2 
shows the neural network analysis for identification of most influential category in 
this data set. This figure demonstrates that the influence of completion and 
stimulation parameters are limited when compared to reservoir quality and 
production categories. 

Figure 2. Influence of the categories in the data set. 
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noted that almost all of the jobs in this field have been water fracs (at least those 
in our data set). Since the parameters in the stimulation category are the only set 
of parameters that can be altered during the optimization process (they are the 
only controllable parameters), the results in Figure 2 indicates that the 
improvements realized by the optimization process would also be limited. 
 
Two production indicators, Best 12 months of production, Five year cumulative 
production, were used as the output for training of the neural networks. The input 
parameters were chosen from those shown in Table 1. Figures 3 and 4 show the 
results of the neural model building process. 

 
Figure 3. Training and verification data for best 12 months production indicator. 
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Figure 4. Training and verification data for five year cumulative production 
indicator. 

 
It can be seen from these two figures that five year cumulative is a better 
production indicator than the best 12 months production to be used for our 
analysis. This conclusion is simply based on the correlation coefficient of the 
above two figures. The correlation coefficients for Figures 3 and 4 are shown in 
the Table 2 below. 
 

 
Table 2. Correlation coefficients for Figures 3 and 4. 
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STEP 2: Genetic Optimization 
 
The first step in the genetic optimization process is the identification of 
controllable parameters. In this field the controllable parameters consist mainly of 
the stimulation parameters. These parameters are: 
 

♦ Amount of water used in the frac job  
♦ Amount of Nitrogen used in the frac job    
♦ Amount of sand used in the frac job   
♦ Average Treating Rate 
♦ Treating Pressure 

 
During the genetic optimization process the neural network that was developed 
during the step 1 of the process is used as the fitness function. The minimum and 
maximum for each of the above parameters are identified and the search and 
optimization process looks for the ideal combination of these parameters that 
results in the highest five year cumulative production using the neural network as 
the model that provides that output (five year cumulative production) when 
presented with inputs.  
 
This process is repeated for each individual well. The pre-optimization five year 
cumulative production is then subtracted from the post-optimization five year 
cumulative production and the difference is suggested to be the "potential five 
year cumulative production". The idea is that the "potential five year cumulative 
production" is the incremental production that would have been recovered if the 
optimized stimulation job would have been implemented on the well, and 
therefore would be the recoverable production upon restimulation.  
 
A software application was developed to perform the operations explained in 
steps 1 and 2 for the Medina/Whirlpool sands of western New York. Figures 5 
and 6 show two screen shots of this software application. Figure 5 shows the 
screen shot for the neural predictive model. This application interfaces the 
database developed for this project. It provides all the available information for 
each well as the well is selected in the list box. The application includes a run-
time version of the developed neural model and provides an answer for five year 
cumulative production each time the network is fired. 
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Figure 5. Neural predictive model interface. 
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Figure 6 show the genetic optimization interface. It also shows the process of 
evolution of the best solution (stimulation detail) as the process completes. 
 

 
Figure 6. Genetic optimization interface.
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STEP 3: Fuzzy Decision Support System 
 
In a recent project sponsored by Gas Technology Institute (GTI) it was found that 
last month production of a well is a good indicator of the well being a 
restimulation candidate. Therefore it was decided to use this indicator along with 
two other parameters as the inputs to the fuzzy decision support system. The 
following three parameters were used in this section of the study: 
 

1. Potential five-year cumulative production from steps 1 and 2. 
2. Reservoir quality.  
3. Last month production rate. 

 
The reservoir quality was calculated using the following relationship: 
 
 

 
The above equation was designed in order to give more weight to the Whirlpool 
formation. 
 
Three different fuzzy decision support systems were designed. The first and 
second fuzzy systems had two inputs and one output while the third fuzzy system 
had three inputs and one output. 
 
First Fuzzy System 
 
The inputs to this fuzzy system included potential five-year cumulative production 
and last month production rate. 
  

 
Figure 7. A typical set of fuzzy sets for the input or output parameters. 
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The output for this fuzzy system is the restimulation candidacy. Figure 7 shows 
the typical fuzzy sets for each one of the parameter. For the two input 
parameters the fuzzy sets included low, medium and high. The fuzzy sets for the 
output were "The well is not a candidate", "The well may be a candidate", and 
"The well is a candidate". Using two input parameters each having three fuzzy 
sets requires the fuzzy system to have nine fuzzy rules. The nine fuzzy rules for 
this system is shown in figure 8. 
 

 
Figure 8. Set of nine fuzzy rules used for the first fuzzy system. 

 
A typical fuzzy rule in the above figure can be written as: 
 
If the potential five year cumulative production for this well is Low and the Last 
month production rate is Low then the well is not a restimulation candidate. This 
rule in the above figure is qualified by the approximate reasoning parameter "very 
true" (VT). The approximate reasoning in this fuzzy system is constructed as 
shown in Figure 9. 
 

 
Figure 9. The approximate reasoning algorithm used in the fuzzy systems. 

 
The above approximate reasoning algorithm provides qualification for each rule 
distinguishing them from one another. Two different fuzzy rules may have the 
same outcome but based on the input values one might be more or less true than 

Low No (VT) No (T) May Be (T)
Medium No (T) May Be (T) Yes (T)

High May Be (T) Yes (T) Yes (VT)
Low Medium High

Last Month Rate

Very True

Fairly True

True

1.0

1.0

0.0
0.0
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the other. The approximate reasoning algorithm is designed to account for such 
qualifications. 
 
The fuzzy sets, rules and inference engine were embedded in a Windows 
application to assist in implementation of the fuzzy system for the Madina/ 
Whirlpool sands of western New York. Figure 10 shows the interface of this 
application. 
 

 
Figure 10. The application interface for the first fuzzy systems. 
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Using this application and applying the fuzzy system to every individual well in 
the study and then ranking them based on the system output provided a list that 
shows the top restimulation candidates. Figure 11 shows the top 25 candidates 
selected using the first fuzzy system with two inputs. 
 

 
Figure 11. Top 25 restimulation candidates from the first fuzzy system. 

 

Rank Well Name
1 SUESS, GEORGE     #430
2 PRZYBYLSKI, LEONARD     #113
3 MIKULA,JOSEPH     #153
4 SUTTON, DAVID     #315
5 MARTIN, DAVID     #300
6 AUGUSTINIANS OF THE ASSUM #103
7 WILKENS, ROY     #343
8 DORMAN, G. & M. #3     #373
9 CROSS, LINDA KAHLE     #388

10 LONGHOUSE ESTATE, INC.     #24
11 COLT, ALVIN     #024
12 POWELL, LELAND     #023
13 WILLS, WILLIAM     #325
14 SCHOLL, MARY A.     #115
15 SUPPO, PETER     #073
16 WINCHELL, FRANCIS     #303
17 PALMER, LONNIE    #074
18 FURMANEK, ALOYSIOUS     #144
19 MCLARNEY, JANE     #102
20 CHILCOTT, EUGENE     #365
21 BECKER, GAIUS     #027
22 MIKULA, JOSEPH     #152
23 SMITH, WARREN     #069
24 BARBER #2
25 DORMAN, G. & M. #2     #349
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Second Fuzzy System 
 
Same approach as the first fuzzy system was used to develop a second fuzzy 
system. The second fuzzy system also had two inputs and one output. The 
inputs of this fuzzy system included potential five year cumulative production and 
reservoir quality index. Figure 12 shows the fuzzy rules used in this fuzzy 
system. 

 
Figure 12. Set of nine fuzzy rules used for the second fuzzy system. 

 

Low No (VT) No (T) May Be (T)
Medium No (T) May Be (T) Yes (T)

High May Be (T) Yes (T) Yes (VT)
Low Medium High

Reservoir Quality Index
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Using the same approximate reasoning algorithms shown in Figure 9 and the 
application shown in Figure 10 a new set of restimulation candidates were 
selected. Figure 13 shows the list of the candidates generated using the second 
fuzzy system. 

 
Figure 13. Top 25 restimulation candidates from the second fuzzy system. 

1 MARTIN, DAVID     #300
2 SUESS, GEORGE     #430
3 WILLS, WILLIAM     #325
4 CRANSTON, CLAUDE     #311
5 WINCHELL, FRANCIS     #303
6 SMITH, M. #1     #245
7 PRZYBYLSKI, LEONARD     #113
8 PALMER, LONNIE    #074
9 MONETTE, CONSTANCE     #427

10 FURMANEK, ALOYSIOUS     #144
11 SMITH, WARREN     #069
12 CORNELL, GORDON     #423
13 MCLARNEY, JANE     #102
14 AUGUSTINIANS OF THE ASSUM #103
15 DORMAN, G. & M. #3     #373
16 DUBOIS,FLORENCE     #079
17 VILLAGE OF BROCTON   #299
18 SUPPO, PETER     #073
19 MIKULA,JOSEPH     #153
20 COLT, ALVIN     #024
21 SCHOLL, MARY A.     #115
22 VAN DETTE, ALBERT     #339
23 BEMUS, CECILE     #214
24 VAN DETTE, ALBERT     #356
25 CRANDALL, RICHARD     #326
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Third Fuzzy System 
 
The third fuzzy system was designed with three inputs and one output. The input 
parameters were included potential five year cumulative production, last month 
production and reservoir quality index. Each of these input parameters had three 
fuzzy sets; low, medium, and high. This resulted in 27 fuzzy rules. Figure 14 
shows the 27 fuzzy rules that was used in the third fuzzy system. As can be seen 
in this figure all the rules are qualified using the same approximate reasoning 
demonstrated in Figure 9. 
 

 
Figure 14. The 27 fuzzy rules used in the third fuzzy system. 

High No (T) May Be (FT) May Be (FT) May Be (T) Yes (FT) Yes (FT) Yes (T) Yes (VT) Yes (VT)

Med. No (VT) No (T) May Be (FT) No (FT) May Be (T) Yes (FT) May Be (VT) Yes (T) Yes (VT)

Low No (VT) No (VT) No (T) May Be (FT) No (FT) May Be (T) May Be (VT) May Be (VT) Yes (T)

Low Med. High Low Med. High Low Med. High
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A new interface for the third fuzzy system was developed. This interface is shown 
in Figure 15. 

 
Figure 15. The application interface developed for the third fuzzy system. 
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Using the third fuzzy system a new set of restimulation candidates were selected. 
This list is shown in Figure 16. 
 

 
Figure 16. Top 25 restimulation candidates from the third fuzzy system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

R a nk W e ll N a me
1 PALMER, LONNIE    # 074
2 W ILLS, W ILLIAM     # 325
3 W INCHELL, FRANCIS     # 303
4 SUESS, GEORGE     # 430
5 MARTIN, DAVID     # 300
6 MCLARNEY, JANE     # 102
7 VILLAGE OF BROCTON   # 299
8 SMITH, M. # 1     # 245
9 SUPPO, PETER     # 073

10 DUBOIS,FLORENCE     # 079
11 CRANSTON, CLAUDE     # 311
12 SCHOLL, MARY A.     # 115
13 SMITH, W ARREN     # 069
14 AUGUSTINIANS OF THE ASSUM # 103
15 BARBER # 2
16 STRAIGHT, FRANK     # 140
17 VAN DETTE, ALBERT     # 356
18 CHILCOTT, EUGENE     # 365
19 CORNELL, GORDON     # 423
20 MILLER, MORRIS     # 433
21 JOSEPHSON, W ALFRED     # 329
22 COLT, ALVIN     # 024
23 ZOOK, MARVIN     # 276
24 BEMUS, CECILE     # 214
25 CRANDALL, RICHARD     # 326
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CONCLUSION 
 
Upon completion of the analysis using three different fuzzy systems three 
different lists of candidates were developed. The last step in this analysis is to 
resolve the three separate lists into a single list and recommend the final list of 
the restimulation candidates. 
 
Figure 17 shows the resolved list of the candidates. 

 
Figure 17. Top 25 restimulation candidates from the virtual intelligence analysis. 

 
 
 
 
 
 

Rank Well Name Last Month Ra te Reservoir Qua lity T hree -Input System
1 SUESS, GEORGE     #430 1 2 4
2 WILLS, W ILLIAM     #325 13 3 2
3 WINCHELL, FRANCIS     #303 16 5 3
4 PALMER, LONNIE    #074 17 8 1
5 MART IN, DAVID     #300 5 1 21
6 AUGUST INIANS OF T HE ASSUM #103 6 14 14
7 MCLARNEY, JANE     #102 19 13 5
8 SUPPO, PET ER     #073 15 18 9
9 SCHOLL, MARY A.     # 115 14 21 12

10 SMIT H, WARREN     #069 23 11 13
11 COLT , ALVIN     #024 11 20 22
12 SMIT H, M. #1     #245 6 8
13 CRANST ON, CLAUDE     #311 4 11
14 VILLAGE OF BROCT ON   #299 17 7
15 DUBOIS,FLORENCE     #079 16 10
16 CORNELL, GORDON     #423 12 19
17 CHILCOT T , EUGENE     #365 20 18
18 BARBER #2 24 15
19 VAN DET T E, ALBERT      #356 22 17
20 BEMUS, CECILE     #214 23 24
21 CRANDALL, R ICHARD     #326 25 25
22 ST RAIGHT , FRANK     #140 16
23 MILLER, MORRIS     #433 20
24 JOSEPHSON, WALFRED     #329 21
25 ZOOK, MARVIN     #276 23

FINAL RANKING
Ranking
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APPENDIX A 
 

Artificial Neural Networks 

In a typical neural data processing procedure, the data set is divided into two 
separate groups called the training and the test sets.  The training set is used to 
develop the desired network. In this process (depending on the paradigm that is 
being used), the desired output in the training set is used to help the network 
adjust the weights between its neurons or processing elements (supervised 
training.)  Once the network has learned the information in the training set and 
has "converged," the test set is applied to the network for verification.  It is 
important to note that, although the user has the desired output of the test set, 
the network has not seen it.  This is to ensure the integrity and robustness of the 
trained network.  In order to clarify the actual functionality of a neural system, a 
short discussion on the mechanics and components of artificial neural network 
follows.  Our experience with neural networks have shown that one will get some 
sort of results by treating neural a network as a black box, where one inputs the 
data, trains the network and gets some output.  It has been our observation that 
a fundamental understanding of the theory and application of virtual intelligence 
in general and neural networks specifically is essential in achieving meaningful 
results and repeatable outcomes. 

Figure A-1. Three parts of a typical nerve cell. 
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A biological neuron is a nerve cell with all of its processes.  Neurons are one of 
the main distinguishing features of animals.  Figure A-1 is a bipolar neuron, which 
means it has two processes. The cell body contains the nucleus. Leading into the 
nucleus is one or more dendrites. These branching, tapering processes of the 
nerve cell, as a rule, conduct impulses toward the cell body. The axon is the 
nerve cell process that conducts impulses away from the cell body.  Bundles of 
neurons, or nerve fibers, form nerve structures. In a simplified scenario, nerves 
conduct impulses from receptor organs (such as eyes or ears) to effector organs 
(such as muscles or glands).  The point between two neurons in a neural 
pathway, where the termination of the axon of one neuron comes into close 
proximity with the cell body or dendrites of another, is called a synapse.  At this 
point, a microscopic gap, the relationship of the two neurons is one of contact 
only.  The impulse traveling in the first neuron initiates an impulse in the second 
neuron.  Signals come into the synapses.  These are the inputs. They are 
"weighted."  That is, some signals are stronger than others. Some signals excite 
(are positive), and others inhibit (are negative). The effects of all weighted inputs 
are summed.  If the sum is equal to or greater than the threshold for the neuron, 
then the neuron fires (gives output).  This is an "all-or-nothing" situation. Either 
neuron fires or it doesn't fire. 
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Within the last few years, hardware improvements have made computer 
simulation of artificial neural network possible.  Although it may seem strange to 
simulate a parallel process on a sequential machine, there have been many 
benefits. It has bought time for the real objective of implementing neural 
networks in hardware, and it has illuminated problems in earlier models. 
Simulations have allowed us to better understand and improve the technology, 
and to tell in advance how well a particular neural network will perform in a given 
application.  In addition to simulations, analog neural network circuits have been 
built and tested. 

Figure A-2. Inputs can be connected to many nodes. 

In neural computing the artificial neuron is called a Processing Element or PE for 
short. The word node is also used for this simple building block, which is 
represented by circles in Figure A-2. These artificial neurons bear only a modest 
resemblance to the real thing. They are barely a first order approximation of 
biological neurons.  Neurons in the human brain perform at least 150 different 
processes, where as Processing Elements model approximately three of those 
processes.  The PE handles several basic functions. It must evaluate input signals 
and determine the strength of each one. Next, it must calculate a total for the 
combined input signals and compare that total to some threshold level. Finally, it 
must determine what the output should be. Just as there are much input 
(stimulation levels) to a neuron, there should be many input signals to a PE. All of 
them should come into PE simultaneously. In response, a neuron either "fires" or 
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"doesn't fire," depending on some threshold level. The PE will be allowed a single 
output signal, just as in a biological neuron - much input, one output. 

In this project the collected data will be transformed into fuzzy sets (explained 
below) and then a neural network is trained using the transformed data.  The 
neural model is built to discover any possible patterns in the data.  Once the 
network is trained and tested it will be the predictive model, which is one of the 
objectives of this study. 
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APPENDIX B 
 

Genetic Algorithms 

In order to understand genetic algorithms evolutionary computation should first 
be defined. 

 

Evolutionary Computation  

Evolutionary Computation is an umbrella term used to describe computer-based 
problem solving systems which use computational models of some of the known 
mechanisms of evolution as key elements in their design and implementation. A 
variety of evolutionary computation have been proposed. 

 

The major ones are: Genetic Algorithms, Evolutionary Programming, Evolution 
Strategies, Classifier Systems, and Genetic Programming. They all share a 
common conceptual base of simulating the evolution of individual structures via 
processes of selection, mutation, and reproduction. The processes depend on the 
perceived performance of the individual structures as defined by an environment. 
More precisely, Evolutionary Computation maintain a population of structures, 
that evolve according to rules of selection and other operators, that are referred 
to as "search operators", (or genetic operators), such as recombination and 
mutation. Each individual in the population receives a measure of it's fitness in 
the environment. Reproduction focuses attention on high fitness individuals, thus 
exploiting the available fitness information. Recombination and mutation perturb 
those individuals, providing general heuristics for exploration. Although simplistic 
from a biologist's viewpoint, these algorithms are sufficiently complex to provide 
robust and powerful adaptive search mechanisms.  

 

Biological Basis  

To understand Evolutionary Computation, it is necessary to have some 
appreciation of the biological processes on which they are based. Firstly, we 
should note that evolution (in nature or anywhere else) is not a purposive or 
directed process. That is, there is no evidence to support the assertion that the 
goal of evolution is to produce Mankind. Indeed, the processes of nature seem to 
boil down to a haphazard generation of biologically diverse organisms. Some of 
evolution is determined by natural selection or different individuals competing for 
resources in the environment. Some are better than others. Those that are 
better are more likely to survive and propagate their genetic material.  
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In nature, we see that the encoding for genetic information (GENOME) is done in 
a way that admits asexual reproduction. Asexual reproduction typically results in 
offspring that are genetically identical to the parent. (Large numbers of 
organisms reproduce asexually; this includes most bacteria which many 
biologists hold to be the most successful species known.) Sexual reproduction 
allows some shuffling of chromosomes, producing offspring that contain a 
combination of information from each parent. At the molecular level what occurs 
(wild oversimplification alert!) is that a pair of almost identical chromosomes 
bump into one another, exchange chunks of genetic information and drift apart. 
This is the recombination operation, which is often referred to as CROSSOVER 
because of the way that biologists have observed strands of chromosomes 
crossing over during the exchange.  

 

Recombination happens in an environment where, among other things, the 
selection of who gets to mate is a function of the fitness of the individual, i.e. 
how good the individual is at competing in its environment. Some Evolutionary 
Computational technics use a simple function of the fitness measure to select 
individuals (probabilistically) to undergo genetic operations such as crossover or 
asexual reproduction (the propagation of genetic material unaltered). This is 
fitness-proportionate selection. Other implementations use a model in which 
certain randomly selected individuals in a subgroup compete and the fittest is 
selected. This is called tournament selection and is the form of selection we see 
in nature when stags rut to vie for the privilege of mating with a herd of hinds.  

 

Much Evolutionary Computation research has assumed that the two processes 
that most contribute to evolution are crossover and fitness based 
selection/reproduction. As it turns out, there are mathematical proofs that 
indicate that the process of fitness proportionate reproduction is, in fact, near 
optimal in some senses.  

 

Evolution, by definition, absolutely requires diversity in order to work. In nature, 
the primary source of diversity is mutation. In Evolutionary Computation, a large 
amount of diversity is usually introduced at the start of the algorithm, by 
randomizing the GENEs in the population. The importance of mutation, which 
introduces further diversity while the algorithm is running, therefore continues to 
be a matter of debate. Some refer to it as a background operator, simply 
replacing some of the original diversity which has been lost, while others view it 
as playing the dominant role in the evolutionary process.  

 

It cannot be stressed too strongly that an evolutionary algorithm (as a simulation 
of a genetic process) is not a random search for a solution to a problem (highly 
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fit individual). Evolutionary Computations use stochastic processes, but the result 
is distinctly non-random search.  

 

What's a Genetic Algorithm?  

Genetic Algorithm is a model of machine learning which derives its behavior from 
a metaphor of one of the mechanisms of evolution in nature (namely, hard 
selection). This is done by the creation within a machine of a population of 
individuals represented by chromosomes, in essence a set of character strings 
that are analogous to the base-4 chromosomes that we see in our own DNA. The 
individuals in the population then go through a process of selection (evolution). 
Genetic Algorithms are used for a number of different application areas. An 
example of this would be multidimensional optimization problems in which the 
character string of the chromosome can be used to encode the values for the 
different parameters being optimized. In practice, therefore, we can implement 
this genetic model of computation by having arrays of bits or characters to 
represent the chromosomes. Simple bit manipulation operations allow the 
implementation of crossover, mutation and other operations. Although a 
substantial amount of research has been performed on variable length strings 
and other structures, the majority of work with Genetic Algorithms is focussed on 
fixed-length character strings. We should focus on both aspects of fixed-
lengthiness and the need to encode the representation of the solution being 
sought as a character string, since these are crucial aspects that distinguish 
genetic programming, which does not have a fixed length representation and 
there is typically no encoding of the problem.  

 

When the Genetic Algorithm is implemented it is usually done in a manner that 
involves the following cycle: Evaluate the fitness of all of the individuals in the 
population. Create a new population by performing operations such as crossover, 
fitness- proportionate reproduction and mutation on the individuals whose fitness 
has just been measured. Discard the old population and iterate using the new 
population.  

 

One iteration of this loop is referred to as a generation. There is no theoretical 
reason for this as an implementation model. Indeed, we do not see this 
punctuated behavior in populations in nature as a whole, but it is a convenient 
implementation model. The first generation (generation 0) of this process 
operates on a population of randomly generated individuals. From there on, the 
genetic operations, in concert with the fitness measure, operate to improve the 
population.  
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APPENDIX C 

Fuzzy Logic 

Fuzzy Logic has emerged as a profitable tool for the controlling of subway 
systems and complex industrial processes, as well as for household and 
entertainment electronics, diagnosis systems and other expert systems.  Fuzzy 
Logic is basically a multi-valued logic that allows intermediate values to be 
defined between conventional evaluations like yes/no, true/false, black/white, etc. 
Notions like rather warm or pretty cold can be formulated mathematically and 
processed with the computer. In this way an attempt is made to apply a more 
human-like way of thinking in the programming of computers. Fuzzy Logic was 
initiated in 1965 by Lotfi A. Zadeh, professor of computer science at the 
University of California in Berkeley. Zadeh started Fuzzy Logic as a means to 
model the uncertainty of natural language. Zadeh says that rather than regarding 
fuzzy theory as a single theory, we should regard the process of ``fuzzification'' 
as a methodology to generalize ANY specific theory from a crisp (discrete) to a 
continuous (fuzzy) form. Thus recently researchers have also introduced "fuzzy 
calculus", "fuzzy differential equations", and so on. 

 

Fuzzy Sets  

Just as there is a strong relationship between Boolean logic and the concept of a 
subset, there is a similar strong relationship between fuzzy logic and fuzzy subset 
theory. In classical set theory, a subset U of a set S can be defined as a mapping 
from the elements of S to the elements of the set {0, 1},  

 

                                                  U: S --> {0, 1} 

 

This mapping may be represented as a set of ordered pairs, with exactly one 
ordered pair present for each element of S. The first element of the ordered pair 
is an element of the set S, and the second element is an element of the set {0, 
1}. The value zero is used to represent non-membership, and the value one is 
used to represent membership. The truth or falsity of the statement:  

 

                                                     x is in U 

 

is determined by finding the ordered pair whose first element is x. The statement 
is true if the second element of the ordered pair is 1, and the statement is false if 
it is 0.  
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Similarly, a fuzzy subset F of a set S can be defined as a set of ordered pairs, 
each with the first element from S, and the second element from the interval 
[0,1], with exactly one ordered pair present for each element of S.  This defines a 
mapping between elements of the set S and values in the interval [0,1]. The 
value zero is used to represent complete non-membership, the value one is used 
to represent complete membership, and values in between are used to represent 
intermediate DEGREES OF MEMBERSHIP. The set S is referred to as the 
UNIVERSE OF DISCOURSE for the fuzzy subset F. Frequently, the mapping is 
described as a function, the MEMBERSHIP FUNCTION of F. The degree to which 
the statement  

 

                                                     x is in F 

 

is true is determined by finding the ordered pair whose first element is x. The 
DEGREE OF TRUTH of the statement is the second element of the ordered pair. 
In practice, the terms "membership function" and fuzzy subset get used 
interchangeably. Let’s clarify these definitions with an example. Let's talk about 
people and "tallness". In this case the set S (the universe of discourse) is the set 
of people. Let's define a fuzzy subset TALL, which will answer the question "to 
what degree is person x tall?" Zadeh describes TALL as a LINGUISTIC VARIABLE, 
which represents our cognitive category of "tallness". To each person in the 
universe of discourse, we have to assign a degree of membership in the fuzzy 
subset TALL. The easiest way to do this is with a membership function based on 
the person's height.  

 

 

tall(x) = { 0,     IF height(x) < 5 ft., 

     (height(x)-5ft.)/2 ft., IF 5 ft. <= height (x) <= 7 ft., 

    1,     IF  height(x) > 7 ft. 

    } 
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Graph of the above statement would look like this:  

 

Given this definition, here is some example values:  

 

 

Person Height Degree of Tallness 

Billy 3' 2" 0.00 

Joe 5' 5" 0.21 

Drew 5' 9" 0.38 

Erik 5' 10" 0.42 

Mark 6' 1" 0.54 

Kareem 7' 2" 1.00 

 

 

Expressions like "A is X" can be interpreted as degrees of truth, e.g., "Drew is 
TALL"=0.38. Membership functions used in most applications almost never have 
as simple a shape as tall(x). At minimum, they tend to be triangles pointing up, 
and they can be much more complex than that. Also, the discussion characterizes 
membership functions as if they always are based on a single criterion, but this 
isn't always the case, although it is quite common. One could, for example, want 
to have the membership function for TALL depend on both a person's height and 
their age (he's tall for his age). This is perfectly legitimate, and occasionally used 
in practice. It's referred to as a two-dimensional membership function, or a "fuzzy 
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relation". It's also possible to have even more criteria, or to have the membership 
function depend on elements from two completely different universes of 
discourse.  

 

Logic Operations  

Now that we know what a statement like "X is LOW" means in fuzzy logic, how do 
we interpret a statement like  

 

                                  X is LOW and Y is HIGH or (not Z is MEDIUM) 

 

The standard definitions in fuzzy logic are:  

 

                                     truth (not x)    =  1.0 - truth (x) 

                                     truth (x and y) =  minimum (truth(x), truth(y)) 

                                     truth (x or y)   =  maximum (truth(x), truth(y)) 

 

Some researchers in fuzzy logic have explored the use of other interpretations of 
the AND and OR operations, but the definition for the NOT operation seems to be 
safe.  

 
Note that if one plugs just the values zero and one into these definitions, one 
gets the same truth tables as one would expect from conventional Boolean logic. 
This is known as the EXTENSION PRINCIPLE, which states that the classical 
results of Boolean logic are recovered from fuzzy logic operations when all fuzzy 
membership grades are restricted to the traditional set {0, 1}. This effectively 
establishes fuzzy subsets and logic as a true generalization of classical set theory 
and logic. In fact, by this reasoning all crisp (traditional) subsets ARE fuzzy 
subsets of this very special type; and there is no conflict between fuzzy and crisp 
methods. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 2 
 
 

Production Type Curve Analysis Methodology and 
 

Evolution for the Determination of Restimulation 
 

Production Potential in New York 
 
 

Advanced Resources International, Inc. 



Subject: Production type curve analysis methodology and evolution for the determination 
of restimulation production potential in New York. 

 
 
Chautauqua County, New York Study – Background 
In response to the success of the 1996 GTI evaluation of restimulating existing tight gas 
sand wells, the New York State Energy Research and Development Authority 
(NYSERDA) and GTI jointly sponsored a restimulation feasibility study patterned after 
the aforementioned program.  The deterministic methodology employed production data 
analysis, artificial neural networks and engineering-based performance type curves as 
well as advanced reservoir modeling techniques to identify restimulation candidates for 
the Belden & Blake Corporation’s Chautauqua County, New York Medina Group gas 
production field. 
 
Chautauqua County, New York Study – Analysis Execution and Results 
 
Chautauqua Study Data and Analysis:  Belden & Blake had previously worked with ARI 
on a 1998 NYSERDA-sponsored project to help determine if natural gas production and 
reserve improvement opportunities existed in the Medina Group, located in Chautauqua 
County, New York1,2.  As part of this work, a systematic geologic and engineering 
evaluation was performed, inclusive of well log petrophysical analysis, geological 
mapping and advanced production type curve analysis, which provided net sand, 
effective porosity, saturation as well as historic production and pressure data for this 
study. 
 However, following a review of the existing production database, Schlumberger -
Holditch Reservoir Technologies (HRT) noted several discrepancies between a given 
production well’s historic first date of production and the first record in the database.  
Therefore, each production history was reviewed to standardize this difference, resulting 
in the addition of up to one year of production history for a large proportion of the wells. 
 Further, several wells experienced unexplained decreases and increases in gas 
production throughout their history.  So, at the request of ARI, Belden & Blake 
performed a critical review of six well files to characterize the nature of the aberrant 
production data.  ARI selected the six wells (the George Sheppard 142, William 
Potkovick 376, Warren Smith 69, YMCA 523, Rizzo-Fay 151 and Roy Wilkens 343) 
such that they covered each of the completion types (Whirlpool, Grimsby or 
Commingled) while maintaining production behavior that was similar (in some fashion) 
to several other wells.  Major findings of this effort, which were generally applied across 
the field, are as follows: 

• Wells have not been recompleted during their life.  
• Wells have not been refractured during their life.  
• No additional compression seems to have been added to the field.  
• Aberrant production increases were found to be due to flush production 

following shut-in periods, the installation of artificial lift methods (casing 
plunger, rabbit), swabbing or the use of soap.  



• Aberrant production decline was found to be due to the lack of sufficient 
energy to lift reservoir fluids, sand production and, in one case, a casing 
leak.  Subsequent remedial operations were able to increase production. 

Type Curve Matching Methodology:  While there were no recompletions, restimulations 
or lease compression changes to consider, ARI recognized that the installation of 
artificial lift methods, such as plunger lifts or rabbits, would effectively reduce the well's 
bottomhole flowing pressure.  So, each of the historical semi-log production and pressure 
charts was reviewed in conjunction with available completion/wellbore data to identify 
those wells that were impacted by this production enhancement method.  To account for 
its impact using production type curves, a match restart of the type curve was made at the 
onset of artificial lift installation, using a reduced flowing pressure consistent with the 
provided historical data.  Figure 1 shows a typical, restarted, production type curve 
match.  Appendix A contains the complete set of METEOR inputs and results for the 
type curve matching effort, while Figures 2, 3, 4 and 5 show the results in a histogram 
distribution format. 

The median results were determined to be a permeability of 39 microdarcies, an 
infinite conductivity fracture half-length of 20 feet, a drainage area of 77 acres and an 
expected average reservoir pressure of 409 psia on May 2001.  Although there is no data 
to verify the accuracy of the permeability and fracture half-length values, they appear 
within reason.  The median drainage area is also a reasonable number.  However, given 
the uncertainty of differential depletion between the Whirlpool and Grimsby formations 
and the recent experience of encountering reduced pressure at infill drilling locations, 
verification of this estimate is problematic. 
 Low net sand estimates for a small group of wells skewed the type curve results to 
larger than expected values of permeability, fracture half-length and drainage area.  For 
example, the David Sutton #315 type curve match resulted in an estimated permeability 
of 0.14 md, a fracture half-length of 40 feet and a drainage area of 268 acres, based on 27 
feet of net sand.  Reviewing the distributions, these results were near the largest range for 
each of the distributions, indicating contributing sand may have been underestimated.  In 
cases such as this, a Voronoi well spacing estimate could have provided a ceiling to the 
drainage area, resulting in an increased reservoir thickness to reduce the drainage volume. 
 
Restimulation and Added Compression Incremental Recovery Methodologies:  To 
determine the impact of restimulation on each of the wells, it was assumed that new 
drainage area would not be created during the restimulation of an existing well.  Further, 
the well’s full drainage area would be at the May 2001 (the estimated restimulation date) 
average reservoir pressure, creating a more conservative assessment of the incremental 
restimulation values. Note that these premises assume that both the Grimsby and 
Whirlpool formations are depleted (with no differential depletion) and that no additional 
pay thickness would be encountered within the variable sequence of the Medina Group. 

Further, a practical expectation of restimulated fracture half-length was 
determined to be 75 feet of infinite conductivity fracture half-length, which is equivalent 
to a skin factor of –5.0.  So, if a predicted fracture half-length was already greater than 75 
feet, no incremental recovery could be captured. 



Figure 6 exhibits a typical restimulation candidate, the Eugene Chilcott #365 
well.  The predicted restimulation gas production stream is shown as a dark red line, 
yielding an estimated 5-year incremental production of 6.0 MMcf, which ranked it as the 
number nine candidate. 
 On the whole, the estimated 5-year incremental values were less than anticipated, 
ranging from no expected improvement to 10.5 MMcf.  This was due, in part, to very 
little remaining differential pressure between the estimated average reservoir pressure and 
sandface flowing pressure.  In many cases, the opportunity existed to determine the 
impact of a reduced sandface flowing pressure, which would act as added lease 
compression. 

So, the impact of added lease compression was explored for each of the 
production wells.  The lowest observed wellhead flowing pressure value, 50 psia, was 
assumed to be the best field practice.  Therefore, only those wells producing at pressures 
larger than 50 psia were considered for improvement by this method. 

Table 1 shows the top ten candidates for restimulation and added lease 
compression, while Appendix B contains each well’s incremental computations for both 
applications.  The results showed that the top ten lease compression candidates could 
garner an additional 27 MMcf of gas as compared to restimulation, suggesting it may be a 
more cost effective approach for the operator. 
 
Discussion:  Although the type curve matching results were quite reasonable, 
implementing quality review checks, such as a Voronoi well spacing comparison with 
drainage area, could have enhanced the outcome.  Without an estimate of the Voronoi 
well spacing, this confirmation point was bypassed, resulting in a handful of wells with 
unreasonably large permeability, fracture half-length and drainage area values. 
 However, by assuming that the estimated drainage area and reservoir pressure 
values would be unchanged by restimulation, conservative expectations can be made of 
the incremental 5-year recovery.  As shown in Figure 6, the expected production profile 
has a production decline consistent with the preceding matches.  Also, the predicted peak 
gas rate, while an order of magnitude higher than the pre-restimulation rate, was found to 
be considerably less than the match immediately prior to it, as might be expected in a true 
“field application.” 
 Although the expected incremental recoveries were found to be more realistic, 
especially in a qualitatively sense, the 5-year volumes were considerably less than what 
might have been expected.  Therefore, it may be more cost effective for the operator to 
pursue production improvements by other means, such as added lease compression.  As 
Table 1 showed, the number one lease compression response was achieved at the 
William Willis #325 well, which predicted a 5-year recovery of about 25 MMcf by 
reducing the lease production pressure from 350 psia to 50 psia. 
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Figure 1 – Typical, Restarted, Production Type Curve Match 
 

Figure 2 – Distribution of Estimated Permeability Results
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Figure 3 – Distribution of Estimated Fracture Half-Length Results 
 

Figure 4 – Distribution of Estimated Drainage Area Results 
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Figure 5 – Distribution of Estimated May 2001 Average Reservoir Pressure Results 
 

Figure 6 – Typical 5-Year Production Profile due to Restimulation  
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Table 1 – Predicted Top Ten Well Recoveries due to Restimulation and Added 
Lease Compression  

Restim Inc.
Well # Well Name Formation k Xf A 5 Yr Cum P, 5/01 5 Yr Cum 5 Yr Cum

md ft acres Bcf psia Bcf MMcf
16 BEMUS, CECILE #214 Comingled 0.150      -          74           0.010      380         0.021              10.5        

115 RAYNOR, WARD #323 Comingled 0.056      5             62           0.013      518         0.022              9.4          
150 WELLMAN, DONALD #120 Comingled 0.007      -          21           0.003      716         0.011              7.6          
146 VAN DETTE, ALBERT #356 Comingled 0.070      10           110         0.012      579         0.020              7.5          
117 RENO, NORMAN #277 Comingled 0.055      7             131         0.011      467         0.019              7.3          

87 MARRANO, ANTHONY #389 Comingled 0.023      25           73           0.007      570         0.015              7.2          
110 POWELL, IRVING#077 Comingled 0.066      15           137         0.009      406         0.017              7.2          

63 FURMANEK, ALOYSIOUS #144 Comingled 0.090      9             293         0.013      426         0.019              6.1          
34 CHILCOTT, EUGENE #365 Comingled 0.325      20           104         0.022      283         0.028              6.0          

149 WEBSTER CASTLE INN #015 Grimsby 0.140      15           104         0.015      365         0.021              6.0          

Compression Inc
Well # Well Name Formation k Xf A 5 Yr Cum P, 5/01 5 Yr Cum 5 Yr Cum

md ft acres Bcf psia Bcf MMcf

154 WILLS, WILLIAM #325 Comingled 0.150      15           62           0.002      366         0.028              25.4        
97 MILLER, MORRIS #433 Comingled 0.210      35           109         0.005      279         0.027              21.3        
94 MIKULA, JOSEPH #152 Grimsby 0.075      25           259         0.012      471         0.027              15.0        

140 SUTTON, DAVID #315 Comingled 0.140      25           268         0.017      440         0.032              14.7        
112 PRZYBYLSKI, LEONARD #113 Comingled 0.110      15           255         0.009      390         0.021              12.5        

75 JOSEPHSON, WALFRED #329 Grimsby 0.090      15           109         0.005      423         0.017              11.3        
145 VAN DETTE, ALBERT #339 Comingled 0.065      13           77           0.008      462         0.019              10.7        
153 WILKENS, ROY #343 Comingled 0.100      17           133         0.013      407         0.021              7.8          

52 DENNISON, WILBER #062 Comingled 0.090      20           133         0.008      359         0.016              7.7          
82 LANFORD, C. #240 Comingled 0.105      14           43           0.004      303         0.011              7.4          

a) Rankings by Incremental Recovery due to Restimulation

TC  Results

TC  Results

b) Rankings by Incremental Recovery due to Added Lease Compression



Appendix A 
 
Chautauqua County, New York Study Inputs and Results 
 
NYSERDA Appendix A\Chautauqua Co, NY Type Curve Inputs and Results.xls 
 
Key:  
Assumed 
No Petrophysical Data 
 
 



Appendix B 
 
Chautauqua County, New York Study Restimulation and Added Compression 
Results 
 
NYSERDA Appendix B\Chautauqua County Restimulation Incrementals.xls 
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