Potential Brine Disposal **Reservoirs in South-Central** New York: Options for Salt Cavern Storage in Areas Remote to Ocean Disposal Courtney Lugert, Taury Smith and **Richard Nyahay** New York State Museum Steve Bauer and Brian Ehgartner, Sandia National Labs

Good market for storage

New York + New England natural gas consumption = 8% of total US*

New York storage capacity = 2% of total US*
New England has no storage capacity*

All new power plants in NY and NE will probably be natural gas-fired

*Source: EIA Website 1998 Statistics

From Sanford, 2000

Current Storage Fields in Eastern US

Consuming East

Salt Cavern Storage Advantages High deliverability and injection rates Short cycle times: can fill and extract several times in a year Least amount of gas lost to formation during injection and withdraw Good usable salt occurs in New York Great Market for Storage

Disadvantages of Salt Cavern Storage

Money – It takes time and money to make caverns - big up-front cost
 Development of well engineered caverns
 Brine Disposal!

Current Salt Cavern Storage Projects in New York/ Northern PA

NYSEG - only operational project, converted an existing solution mine to a storage facility
 Tioga – Northern Pa.
 Bath – Attempting to convert an existing LPG storage cavern to natural gas storage
 Avoca – currently looking for brine disposal options

Salt Operations in New York

Avoca Project The Original Plan Six caverns to be solution mined for storage 6.72 BCF total capacity, 10 day cycle time at 500 MMCF/D 50 million barrels of brine to be re-injected in six disposal wells Everything worked except brine disposal – no permeable formations, earthquakes induced during injection, project went bankrupt after \$100 million investment

Our Research Two Phased Plan Phase I - "Usable Salt" Define areas where developing caverns is a possibility Phase II – Brine Disposal Within the areas of usable salt, delineate formations with potential as brine disposal reservoirs

Cavern Site Criteria

- Salt thickness and quality (200-300 feet preferred, but need minimum of 100 feet with few non-salt intervals)
 Salt Depth (2000-6000 feet)
- Location (proximity to power, populations, market and pipeline)
- Fresh Water Source (to use for dissolution)
- Brine Disposal Options (ocean, salt plant feed, deep well injection)

Brine Injection Challenges

- Significant volumes of brine produced during solution mining (6.75 volumes of brine to make 1 volume of cavern)
- Relatively high injection rates are a must (20,000-100,000 barrels of water per day)
- Need good porosity and permeability in disposal reservoirs
- The problem in New York:
 - Porosities and permeabilities in NY and much of the Appalachian Basin are low

Phase I – Usable Salt Criteria

We will be looking for salt that is:First - 2000-6000 ft deep

Second - intervals of salt that are > 100 ft thick w/ no intervals of non-salt greater than 10ft

Where both criteria are met = "Usable Salt"

Usable Salt is in Silurian Salina Group

Rickard's Cross Section Through South-Central New York

SILURIAN CROSS SECTION

Rickard's Cross Section Through South-Central New York

SILURIAN CROSS SECTION

Depth to Salina F unit Datum: Surface

2000 and 6000 ft contours

Correct Depth - 2000-6000 ft below surface

Thickness of Salina F-unit

Correct Thickness of Salina F salt - 100 ft thick with less than 10 ft breaks of non-salt

Greatest Usable Salt and 2000' and 6000' contours

Study Area for Phase II -area where salt cavern development is possible

Over-thickened salt

Salt

Queenston/Medina

Trenton

Over-thickened salt

Salt

Queenston/Medina

Trenton

Our Project Design Two Phased Phase I - "Usable Salt" Define areas where developing caverns is a possibility Phase II – Brine Disposal Within the areas of usable salt, delineate formations with potential as brine disposal reservoirs

What makes a good brine disposal formation ?

- Matrix porosity of at least 10%
- Either good matrix permeability, fracture permeability or a good candidate for induced fracturing
- Connate water salinity similar to the injected brine
- Must be hydraulically separated from sources of potable water

Our Criteria

Lithology (sandstones and carbonates)
Porosity and Permeability
Production History (Here or in nearby states)
Currently Used for conventional depleted reservoir storage? (If it is a good storage reservoir already, most will not want to use it for brine disposal)

PERIOD		GROUP	UNIT	L	ITHOLOGY	ENVIRONMENT	POROSITY/ PERM.	OIL OR GAS RESERVOIR TYPE	CURRENTLY USED FOR STORAGE	POTENTIAL AS BRINE DISPOSAL RESERVOIR
DEVONIAN	UPPER	GENESEE	WEST RIVER ITHICA RENVICK SHERBLRINE PENNYANN GENERRO		SPIALE WITH MINOR SILISTORE AND LIMESTORE	DEEP MARINE RASIN				NO
			TULLY		LIMESTONE WITH MINOR SILTSTONE AND LIMESTONE	LOW ENERGY			YES, 1, GILBERT	MAYBE
	- MIDDLE	HAMILTON	MOSCOW LUDLOWVELE SKANEATHERS MARCELLUS		SHALE WITH MINOR SANDSTONE AND CONGLOMERATE	DHEP BASIN, UNDERWATER DELTA CHANNELS, TEAL FLATS, OFFSHORE BARS DEEP BASIN, FOOR CIRCULATION OF OXVIGEN		¢ CAS		MAYBE
			GNGNDAI7A.		POSSILIPEROUS LIMESTONE & REEPS	SHALLOW MARINE, MEDUM-LOW ENERGY		GAS, REEF AND FAULT GENERATED F FRACTURES	YES, 2, FRACTURED LS AND L PINNACLE REEF	MAYBE
	ei i	TRISTATES	ORISKANY		QUARTZ SANDSTONE	NEAR SPORE, SHALLOW MARINE, HIGH ENERGY	-ave. 9% -open fractures, 200-47 800 md	GAS, FORMATION PINCHES OUT LOCALLY FORMING TRAPS, ANY CLOSED 2.6 STRUCTURALLY HIGHER POSITION	YES, AT IEAST 9 76	MAYBE
	IMOT	HELDERBERG	MANLIUS RONDOUT		LIMESTONE	TIDAL, SHALLOW MARINE SHALLOW MARINE, HIGH SALINITY				NO
SIURIAN			AKRON-		DOLOSTONE	SPIALLOW MARINE, NORMAL SALINITY	< 5% < 1md	1 OIL AND GAS, BASS ISLAND TREND, STRUCTURAL TRAPS, FRACTURES	4 YES	MAYBE
	UPP ER.	SALINA	BERTE CAMILLIS SYRACUSE VERNON		SHALE, DOLOSTONE, ANHYDRITE AND HALITE	SPALLOW SHELF, HIGH SALINITY RESTRICTED MARINE PLAYA OR LAKE COASTAL PLAIN, SHALLOW SHELF			YES, I-LICI, I OPERATIONALAND SEVERAL PROPOSED NAT. GAS, CENTRAL NY	NO
		LOCKPORT	LOCKPORT		LIMESTONE AND DOLOSTONE STROMATALITE MOUNDS	SHALLOW SHIEF TO CARDONATE PLATS		GAS, PINNICALE REEF, NO MAJOR PRODUCT)	80N	NO
	LOWER	CLINTON	ROCHESTER IRONDEQUOIT		STALE SANDSTONE LIMESTONE	DPEN MARINE SHIEF WARM, CLEAR, SHALLOW SHIEF		CIAS, STRATIGRAPHIC		NO
			WILLOWNALE SALQUOIT WOLCDIT SODUS BEAR CREIK		SHALE SANDSTORE AND SHALE LIMESTORE SHALE HEMATITE & IRON ORE	NEAR NORE, SUBTIDAL QUIET WATER TO MALLOW SIRELF SIMALOW MARINE IN DEPRESSIONS BETWEEN				
			FURNACEVILLE KODAK		SANDSTONE	NEAR SHORE RIDGES OF SAND				
		MEDINA	GRIMSBY WHIRLPOOL		SANDSTONE AND SHALE	DELTAIC - SHALLOW TURBULENT WATER		GAS, SAND DOMINATED CHANNEL 1 DEPOSITS, PRODUCED FROM FRACTURES	10 GAS STORAGE FIELDS IN WESTERN NEW YORK	MAYBE
ORDOVICIAN	UPPER		QUEENS TON		SANDSTONE AND SHALE	DILITAIC, BRAIDED STREAM	AS HIGH AS 1540 Ind	GAS, UP DIP FACIES CHANGE	POTENTIAL GAS STORAGE	YES
			OSWEGO LORRAINE UTRA		SHALEY SANDSTONE SHALE WITH SANDSTONE AND SILTSTONE	NEAR SHORE AND BEACH SHALLOW AND MODERATELY DRIP MARINE DRIP BASIN		PORPOSED GAS, GAS SHALE		NO
	dDDLE	TRENTON- BLACK RIVER	TRENTON BLACK RIVER		FORSILIPEROUS LIMESTONE DOLOSTONE AND	SHALLOW MARINE, TIDAL PLATS AND SLOPE SHALLOW SPELF		GAS, VUGGY HYDROTHERMAL DOLOMITE, FRACTURES-TUG HILL AREA		YES
	LOWER		TRIBES HILL		HYDROTHERMAL DOCOMITE DOLOSTONE, LIMESTONE AND SILSTONE					
	~	BEEKMAN- TOWN	LITTLE PALLS THERESA (UALWAY)		DOLOSTONE SANDSTONE	TROPICAL CDASTAL COMPLEX	upper portion of L.F.	GAS, viggy dolumite, STRUCTURAL 5.6 CLOSURE OF FRACTURE SYSTEM	POTENIAL STORAGE RESERVOIR	YES
	LIPPEI		POTSDAM		AND SANDY DOLDSTONE QUARTZ SANDSTONE		Rund Potsdam entremely 4 percess and permasible			
PRECAMBRIAN		AMBRIAN	MARIN.E QLIARIZITE etc>		METAMORPHIC AND IONEOUS ROCKS					NO

Right Lithology Good Porosity and Permeability History of Production Not used as a storage reservoir MAYBE All of the above and currently used for storage

YES

Potential Disposal Reservoirs

YES

- Queenston Formation
- Trenton-Black River
 Hydrothermal Dolomite
- Beekmantown Group

- MAYBE
 - Tully Limestone
 - Hamilton Group
 - Onondaga Limestone
 - Oriskany Sandstone
 - Akron-Cobleskill Limestone
 - Medina

Queenston Sand/Shale Ratio Map

e,

Queenston Sand/Shale Ratio Map

e,

We have a Queenston core in our collection that is from the Auburn Field

We described the core in detail focusing on the depositional texture and defining zones of visible porosity

Reservoir Facies

Main Rock Types Siltstone

4 in.

Conglomerate

Log Analysis

 Zones of visible porosity correlate reasonably well to areas where the density is less than average (2.5)

1680.5 .125 mm Intergranular porosity in a medium grained qtz ss

Queenston Disposal Reservoir Potential

It is widespread and more sand-rich in the area of usable salt

- It has shown to have the capacity to accept brine in current disposal operations
- Production from the Queenston has occurred for over 30 years in central New York
 Reservoir in sandstone

Dt	EEK			oup			
ICIAN	UPPER	IVILUIIVA	QUEENSTON OSWEGO LORRAINE UTICA	0 0 0 0 0 0	SANDSTONE AND SHALE SANDSTONE AND SHALE SHALEY SANDSTONE SHALE WITH SANDSTONE AND SILTSTONE	SALT	
DOV	MIDDLE	TRENTON - BLACK RIVER	TRENTON BLACK RIVER		FOSSILIFEROUS LIMESTONE AND MINOR DOLOSTONE LIMESTONE	METAMORPHIC ROCKS	
ORI	LOWER	BEEKMAN-	Tribes Hill				
CAM- BRIAN	UPPER	TOWN	LITTLE FALLS THERESA POTSDAM	0 0 0 0 0 0 0	DOLOSTONE, SANDSTONE AND SANDY DOLOSTONE QUARTZITIC SANDSTONE		
PRECAMBRIAN			MARBLE, QUARTZITE, etc	++++++	METAMORPHIC AND IGNEOUS ROCKS	IGNEOUS ROCKS	

Study interval includes Tribes Hill, Little Falls, Theresa and Potsdam Formations and all equivalents in New York

Potential for disposal is in porous dolomite, hydrothermal breccias and possibly in sandstone

The best reservoir potential in the Beekmantown Group is found in the porous dolomites of the Peloidal Grainstone interval in the Little Falls

Peloids are either micritized ooids and rounded skeletal grains or fecal in origin.

Environment: Forms in shallow, high-energy conditions.

74NY-10: 701 feet

1.0 mm

Core locations from Mohawk Valley, New York All cores go from Utica to basement We are currently studying these cores in detail

74NY-10: 646 feet

0.5 mm

1.0 mm

74NY-10: 658 feet

These breccias have saddle dolomite and calcite cement, no clay

Environment: Forms due to fault movement and associated thermobaric fluid flow

Reservoir Quality: Could be good if laterally extensive

Quartz Sandstone

Sandstone is common, particularly toward base; cross-bedding common; Most is cemented with quartz overgrowths or dolomite

Environment: wave and tide-dominated, shallow marine

Reservoir Quality: Generally poor, some interparticle porosity

74NY-10: 841 feet

0..5mm

Beekmantown Disposal Reservoir Potential

 Reservoir in porous dolomite and possibly sandstone and hydrothermal breccias

 Porosity is widespread (Beekmantown Study in Ohio showed widespread porosity in "B" Unit; Mohawk Valley study shows laterally-extensive porosity)

Beekmantown is thick in areas of usable salt

Trenton-Black River Fields typically produce from diagenetic traps in fault-controlled structural lows where patchy matrix dolomite and brecciated zones are common. Vuggy porosity in hydrothermally altered Black River Group

Glodes Corners Road Example

Cross section through Wilson Hollow Field, NY

Trenton Black River Disposal Reservoir Potential

Prolific producers in recent time

- Fields are located in area of usable salt
- Most wells are still active and could be converted easily
- The fields may prove to be unattractive for conventional depleted reservoir storage due to the heterogeneity and unknown lateral extent
 Reservoir- vuggy dolomite in Black River

Conclusions

Brine disposal is the major obstacle to salt cavern storage in the New York

Our systematic study of potential brine injection reservoirs shows that there are three potential targets in area of usable salt: The Queenston, Trenton Black River and Beekmantown

Future Work

 Continue to make maps of possible brine disposal reservoirs

Analysis of all logs in area of usable salt for porosity in Queenston and Beekmantown

Feasibility study of whether Trenton Black River will make good gas storage reservoir. If not, it could be a great brine disposal target

Research presented here was conducted as part of a grant funded by the DOE and NYSERDA