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Core Workshop Schedule

2:00-3:00 Intro and Marcellus Slides and
Poster

3:00-345 Marcellus core viewing, poster
and discussion

3:45-4:30 Utica Slides

4:30-5:15 Utica core viewing, poster and
discussion

5:15-5:30 Intro to field trip
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Goals of Workshop and Field Trip

o Stratigraphy, sedimentology, depositional
Setting, Structural Setting and Vertical and
lateral distribution of organic-rich black
shales In NY

— Relatively shallow not deep and onlapping
unconformities

— Formed from moving bottom currents In
periodically anoxic water, not from suspension
In permanently anoxic water

— Faults, natural fractures and mineralization may
play a role in both but especially in Utica




Black Shale Depositional Models

« Depositional models are interesting in an
academic sense, but can also help refine

exploration concepts
 In black shales, there are three important variables

— Organic productivity (mainly driven by nutrient

supply)
— Preservation (driven mainly by oxygen levels)
— Dilution (need limited siliciclastic influx or
carbonate deposition)




Controls on Dilution
Organic Content (Siliciclastic influx controlled
by topography, climate,
proximity to source)

Productivity
(mainly controlled by
nutrient input (P and N))

<— low Oxygen

Preservation
(mainly controlled by oxygen levels)

High productivity, high preservation and low dilution best to
generate high organic content in shale — it is not necessary to have
all three conditions; if productivity is high and dilution is low,
preservation could be fairly low but organic matter could still
accumulate; If productivity and preservation are high, dilution could
be pretty high and % TOC could still be relatively high
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models have been proposed for the Utica
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That stratigraphic model Is based on a depositional model something
like this — organic-rich shale in deep cold basin
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Or this model that shows black shale deposition in 200-250 m of water
(from Brett and Baird, 1991)
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Sageman et al., 2003 have the black shale forming in the deepest
part of the basin




Shallow-water
shelf

Carbonate =~ p
shoals and  Hemipelagic
buildups mud plume

Zone of phosphate""f

formation . ~
Turbidity and debris™
flows

. Y - . .
—%— — =~ — % — —*,— —Fair-weather wave base —

Contour curren

-
L

Suspension
Fl)' r‘ @ "

Al

Storm=wave base

Oxygen minimum ==
Framboidal pyrite formation Op

Euxinic L
ll? . inwatercolumn ‘g @
"-"t.._ =S Anaerobic to dysaerobic o
S

LSS

~ 400to 700 ft ~

FLORA

Land plants  Algal cysts

FAUNA

5 L1177\
L LT 18 T ——————————

Benthic foraminifera

Tasmanites

What happens over here?

— e e e o Em RGN . —— - - -

\

Gastropods
Filibranch mollusks
Brachiopods

Bryozoans [ —

Sponges

Ophiuroids

Presence of these biota in a
> basinal setting indicates
downslope transportation.

Agglutinate foraminifera
Conodonts

Nektoplankion|ca —

Cephalopods
Radiolarians

2y, Turbidity and debris flows P Contour currents

@ Cephalopod

Loucks and Ruppel, 2007

Radiolarian  gm  Microframboidal pyrite

Or this recent model for the Barnett Shale — clay settles from suspension




Deep Model

 All those models showed the black shale forming
In deep, basinal settings >130 meters deep with a
permanent zone of anoxia and still water below

the pycnocline where organic matter is preserved

The black color, laminations, pyrite and some of
the fossils found look deep because they are so
unlike the other sediments we have come to think
of as shallow marine deposits
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These very deep models are at
least in part driven by the
modern analog of the Black Sea
which is a silled basin up to 2km
deep with a pycnocline at 100-
200m depth

The Black Sea is a bit of
geological oddity though — the
basin is nothing like the vast
epeirc seas where the Utica and
Marcellus were deposited




Problems with Deep Model

Nutrient Trapping

— Nutrients would fall below pycnocline never to feed again — all
nutrients would need to come from land — this will diminish
productivity

Maintaining permanently anoxic water

— It requires a large volume of organic matter and very still water to
maintain an anoxic zone tens of meters deep

Organic matter gets eaten on the way down

— the higher the column of oxic water, the lower the chance the
organic matter will even make it to the pycnocline

Dilution
— what prevents silcicilastics from moving to bottom of slope?

Stratal Geometry

— Doesn’t explain distribution of organic-rich shale in Utica and
Marcellus and link to unconformities




Shallow Versus Deep

« For more than 50 years there have been arguments
over whether the Devonian Black Shales were
deposited in deep or shallow water

The distribution of the shales on tectonic highs,
the fact that many of them overlie unconformities
and are time-equivalent to periods when there was
significant exposed land nearby and other factors
have led some to interpret a shallow marine origin
for the shales
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Looking at the distribution here, it Is very difficult to make the black
shale the deepest facies — they are the only facies deposited on the
tectonic high — if the black color symbolized ooid grainstones or tidal

flats would anyone be surprised? It seems like where one would
expect to find shallow marine facies
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Devonian Paleogeography
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Devonian Paleogeography
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Devonian Paleogeography
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Sea Level Rise

e The transgressions in the cases of both the
Utica and Marcellus come more as a result of
Increased subsidence related to mountain
building than of a eustatic sea-level rise — in
fact eustatic sea level appears to have been
pretty low

Both deposited during greenhouse times of
low amplitude eustatic sea level changes

Differential Subsidence is Key - Not Eustatic Sea Level Rise
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Sea Level Rise

e The transgressions in the cases of both the
Utica and Marcellus come more as a result of
Increased subsidence related to mountain
building than of a eustatic sea-level rise — in
fact eustatic sea level appears to have been

pretty low

Both deposited during greenhouse times of
low amplitude eustatic sea level changes
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Devonian Stratigraphy
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Although there may be some issues with this deWitt et al. (1990) cross
section — it shows that many black shales overlie and are time-equivalent
to major unconformity




Drowning versus Subaerial
Unconformites

Some authors have suggested that these unconformities are
drowning unconformities where there are long periods
(millions of years in some cases) where there Is non-
deposition and even corrosion in deep anoxic water (Brett
and Baird, 1991, others)

Evidence includes phosphatized deposits, reworked pyrite,
bone beds

It Is clear, however, that at least some of them are at least
Initially subaerial

Perhaps some or all start out as subaerial unconformities
where most of the time Is missing, but the phosphate,
pyrite, bone material, etc are all deposited during the
subseqguent transgression




SYSTEM |SERIES| GROUP | (THICKNESS, | MEMBER |
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1:'
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MISSISSIPPIAN

Mississippian

| FORMATION THICKNESS

IN FEET CHARACTER OF ROCKS

SECTION
IN FEET)

17 I —— S— § R
-

Fort “'{” - Interbedded chert and limestone; greenish-gray to grayish-yellow

iy 2004 | bedded chert and greenish-gray dense argillaceous siliceous

200 limestone

Maury

Claystone and scattered phosphate.
formation

bluish gray (fresh), grayish yellow green to dark yellowish orange
2.3 : i \ (weathered); has blocky to subconchoidal fracture

in form of balls, disks, and plates; balls and disks less than 0.1
foot in diameter; plates less than 0.5 foot in greatest dimension;
most abundant at top and base. Top contact is sharp and un
dulating having 0.1 foot relief

¥
Phosphate nodule layer of variable thickness
shapes as much as 1.5 feet or more in greatest dimension, in an
olive-gray sandy matrix. Concentration of nodules varies lat-
erally Where nodule layer is thickest, overlying claystone is
correspondingly thinner
—
Black shale
Unweathered rock is grayish black, massive, and breaks with
conchoidal fracture; weathered rock is medium to dark gray and
finely fissile Paper-thin medium dark-gray siltstone partings;
films and thin lenses of marcasite

Interbedded black shale and medium gray claystone. Chiefly black
shale as described in overlying unit. At base is a "‘varved bed"
approximately 0,05 to 0.20 foot thick consisting of thin alter-
nating beds of light-brown siltstone and black shale; the black
shale layers become thicker and more closely spaced upward
Basal contact sharp

memb e

y
I Middie

Black shale. Similar to 6.9-100t black shale unit above. A few
thin layers of medium-gray caystone near base, suggesting that
lower contact is gradationa

| Chattancoga

shale
321

Center Hill bentonite bed

Interbedded medium light-gray claystone and dark-gray shale beds
commonly 0.1 to 0.4 foot thick, Bentonite bed, 0.09 foot thick,
has conspicuous biotite flakes: olive gray where fresh, pale
yellowish orange where weathered and readily observed on face
of outcrop: top is 0.85 foot below top of unit

Black shale. Generally resembles 6.9-1oot shale unit above. color
ranging from grayish black to dark gray Poorly sorted basal
sandstone present at most places. Averages about 0.02 foot
thick: contans very fine grained clear quartz, iron sulfide, water
worn chert and shell fragments, and conodonts. Basal contact
sharp but slightly undulating, truncating underlying limestone at
an angle of 1° or less

CONFORMITY we
Leipers
imestone Limestone, bluish:-gray, and argillaceous; light-gray to bluish-gray
- calcareous siltstone in lower 30 feet. Weathers grayish orange
50— to yellowish gray

|
i
!
|

GURE 5.—Standard section of the Dowelitown and Gassaway members of the Chattancoga shale. Vertieal cut along east approach to Sligo

bridge on State Route 26 (loc. 76), about 7 miles east of Smithville, DeKalb County, Tenn.

Claystone is light to medium

Phosphate

Nodules of m.m; I

Conant and Swanson
(1961) shows that the
Chattanooga Shale
overlies many different
formations including
some as old as the
Middle Ordovician
(>75 million years
missing)

That shows that the
unconformity is at least
Initially a subaerial
unconformity rather
than a drowning
unconformity




SYSTEM SEIIiHESVGF:)U_PE;T%QST‘?@?..H-E\'—M; SECTION T'!*,LC':?ETSS CHARACTER OF ROCKS Conant and Swanson

IN FEET)
Fort Payne Interbedded chert and limestone; greenish-gray to grayish-yellow

chert T |  bedded chert and greenish-gray dense argillaceous siliceous
200: imestons SNOwWS tnat the

e - ———
n p h F b t
formmlion Claystone and scattered phosphate, Claystone is light to medium

bluish gray (fresh), grayish yellow green to dark yellowish orange

== 3s
S S— 23 5 = . (weathered); has blocky to subconchoidal fracture. Phosphate | ‘ h attan OO a S h al e
§ = g\ in form of balls, disks, and plates; balls and disks less than 0.1 |

ARBONIFEROUS |
MISSISSIPPIAN
Mississippian

1:-

foot in diameter; plates less than 0.5 foot in greatest dimension;
most abundant at top and base. Top contact is sharp and un

o L it overlies many different
¥ - 4
Phosphate nodule layer of variable thickness Nodules of many y

shapes as much as 1.5 feet or more in greatest dimension, in an |
olive-gray sandy matrix. Concentration of nodules varies lat-

erally. Where nodule layer is thickest, overlying claystone is fo rm atl O nS I n CI u d I n
correspondingly thinner

Black shale
Unweathered rock is grayish black, massive, and breaks with

conchoidal fracture; weathered rock is medium to dark gray and SO me aS O I d as the
finely fissile Paper-thin medium dark-gray siltstone partings;

N films and thin lenses of marcasite

Interbedded black shale and medium gray claystone. Chiefly black = - -

shale as described in overlying unit. At base is a "‘varved bed" | M I I O rd OVI C an
approximately 0,05 to 0.20 foot thick consisting of thin alter- |
nating beds of light-brown siltstone and black shale; the black
shale layers become thicker and more closely spaced upward

s | (> 75 million years
Black shale. Similar to 6.9-100t black shale unit above. A few - -
thin layers of medium-gray claystone near base, suggesting that | l I l I SS I n g

lower contact is gradationa
| Chattancoga

shale
321

Contar Hil bontritebod | That shows that the
Interbedded medium light-gray claystone and dark-gray shale beds u n CO nfo ty S

commonly 0.1 to 0.4 foot thick, Bentonite bed, 0.09 foot thick, - . - -

has conspicuous biotite flakes: olive gray where fresh, pale

yellowish orange where weathered and readily observed on face I n Itl a a Su ae r I a

of outcrop: top is 0.85 foot below top of unit
el LNan a drowning

ranging from grayish black to dark gray Poorly sorted basal
| @ | sandstone present al most places. Averages about 0.02 foot
| | 2 thick; contans very fine grained clear quartz, iron sulfide, water -
worn chert and shell fragments, and conodonts. Basal contact u n CO n O rm It
sharp but slightly undulating, truncating underlying limestone at

an angle of 1° or less

UNCONFORMITY —

IAN

Leipers

imestons Limestone, bluish:-gray, and argillaceous; light-gray to bluish-gray

calcareous siltstone in lower 30 feet. Weathers grayish orange
50= | to yellowish gray
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GURE 5.—Standard section of the Dowelitown and Gassaway members of the Chattanooga shale. Vertleal cut along east approach to Sligo
bridge on State Route 26 (loc. 76), about 7 miles east of Smithville, DeKalb County, Tenn.
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This is a good datum for the underlying Marcellus but not for any overlying
shales - must datum above shale of interest to see true stratal architecture
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This is a good datum for the underlying Marcellus but not for any overlying
shales - must datum above shale of interest to see true stratal architecture




What a difference a datum makes

* In viewing these black shales it is very important
to hang cross sections somewhere above the shale
of interest

* When one does that the onlapping geometry
becomes clear

e The Tully Limestone and time-equivalent Gilboa
Sandstone are the last good basin-wide datum and
therefore they get used in some cross sections




Devonian Shales of Western NY - Transgressive Onlap Model
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Limestones and black shales onlap and occur
only on east-dipping side of basin

Marcellus is lowermost and most widespread




Devonian Shales of Western NY - Transgressive Onlap Model
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The onlap is driven by continued higher rate subsidence to the east
during deposition — more space Is consistently made in the east than it is
In the west — minor eustatic sea level changes still produce cyclicity




West Marcellus Cross Section East
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Each TOC rich mudrock unit becomes more OC-rich to west until it
pinches out and more clay rich and less OC-rich to the east

Limestones onlap and pinch out to west and grade into siltstone or
shale to east

The Union Springs Shale and Cherry Valley Limestone pinch out in
western NY, Oatka Creek pinches out under Lake Erie to west
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pinches out and more clay rich and less OC-rich to the east

Limestones onlap and pinch out to west and grade into siltstone or
shale to east

The Union Springs Shale and Cherry Valley Limestone pinch out in
western NY, Oatka Creek pinches out under Lake Erie to west




Marcellus Cross Section East

West
1137.00-00 TIE00-00 227310000 Z2E00-00 21675-00-00 22970000 229610000 ZINH0000
TT T P—:gﬁ? B= = = U 0 0 all0 v allc
I { ‘ .
1 I - e HiEE # ' c . “ U P ' cle
jas = Bl _ ¢
NS ‘ \ | '] f \ i i (iR H Gray Shal H 8
L RN TNA. j sa i i ‘ O
Tl 1 ]| CherryValley Limestone — L i ’1 Al 1 =
— e A Union Springs | A i o ’
AT N RN = I

S
ol
&
fe]
Q@
y o i R - L i
N ._T"""‘:m»._,_._
i i i i | | i 1 i [ ] ¥

Each TOC rich mudrock unit becomes more OC-rich to west until it

pinches out and more clay rich and less OC-rich to the east

Limestones onlap and pinch out to west and grade into siltstone or
shale to east

The Union Springs Shale and Cherry Valley Limestone pinch out in
western NY, Oatka Creek pinches out under Lake Erie to west




Depositional Environment of Organic Rich Mudrocks Devonian of New York

Organic-rich mudrock (and associated limestones)

deposited on cratonward side of basin not deepest part
< Present Day East

- TOC Increases to west

P Clastic Influx
~ Nutrient Influx

Clay Dilution Increases

-

Land

Rising Sea Level

~_upweling?, | Mountains

Submarine corrosion possible arine'Shale

Organic-rich mudrock deposited in
Seasonally Anoxic Water 10-50 m deep
(sensu Tyson and Pearson, 1991)

Marcellus and other Devonian organic-rich mudrocks formed
primarily on the cratonward side of the foreland basin in relatively
shallow water (10-50m) — not in the deepest part — shallow, warm,
higher salinity water would have less oxygen to begin with - water

might be murky which would cut down on photosynthesis in all
but shallowest waters which would further decrease oxygen levels




Tyson and Pearson (1991) Model for
Seasonal Anoxia

« Spring: Phytoplankton bloom - they remove oxygen from
very bottom of warm, shallow water as they die

o Summer and Fall: Thermocline develops in shallowest
water first and organic matter accumulates, conditions

become euxinic causing phosphate to be separated from
organic matter (Kump and Meyer, 2008) — bottom water
zone might only be a few cm thick

Winter: Thermocline breaks down during winter as storms
stir up bottom, remobilizing phosphate back to surface and
oxidizing some (but not all) organic matter - over time it
accumulates




Depositional Environment of Organic Rich Mudrocks Devonian of New York

Organic-rich mudrock (and associated limestones)

deposited on cratonward side of basin not deepest part

- Present Day East

TOC Increases to west _
- Clastic Influx

- - -‘ -
Clay Dilution Increases > Nutrient Influx

Rising Sea Level

Mountains
Submarine corrosion possible

Organic-rich mudrock deposited in
Seasonally Anoxic Water 10-50 m deep
(sensu Tyson and Pearson, 1991)

Productivity: marine algae feed on nutrients that might come from
rivers, possible upwelling but mainly from recycling off the
seafloor which is far more likely in shallow, seasonally anoxic
water




Depositional Environment of Organic Rich Mudrocks Devonian of New York

Organic-rich mudrock (and associated limestones)

deposited on cratonward side of basin not deepest part

- Present Day East

TOC Increases to west _
- Clastic Influx

- - _‘ -
Clay Dilution Increases > Nutrient Influx

Rising Sea Level

Mountains
Submarine corrosion possible

Organic-rich mudrock deposited in
Seasonally Anoxic Water 10-50 m deep
(sensu Tyson and Pearson, 1991)

Preservation: organic-rich sediments would be deposited most
years during spring, summer and fall months — some or all of the
organic matter might be eroded during winter storms but over
time enough would be preserved to make a black shale -
Seasonal zone of anoxia might only be a few cm thick




Depositional Environment of Organic Rich Mudrocks Devonian of New York

Organic-rich mudrock (and associated limestones)

deposited on cratonward side of basin not deepest part

- Present Day East

TOC Increases to west _
- Clastic Influx

- - _‘ -
Clay Dilution Increases > Nutrient Influx

Rising Sea Level

Mountains
Submarine corrosion possible

Organic-rich mudrock deposited in
Seasonally Anoxic Water 10-50 m deep
(sensu Tyson and Pearson, 1991)

Dilution: Sediment influx will be high on east side to depocenter
of basin but progressively lower on west side — sand unlikely to be
moved uphill, very likely to be moved downhill — this is why the
organic rich shales primarily form on cratonward side of basin
where dilution is minimal — limestones are also mainly on western
side and sandstones mainly on eastern side




West Middle and Upper Devonian, NY East
Lake Erie Catskills
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Transgressive Onlap Model — Shales only occur on cratonward side of

basin, onlap and are time-equivalent to unconformities
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Looks like it might be the case in the Woodford, Haynesville and
other shales




Oxygen Solubility in Seawater
Salinity ~ 35

Oxygen Solubility (mg/I)

20 25 30 35 40 45

Temperature (deg C)

From www.EngineeringToolBox.com

Oxygen has retrograde solubility
so the warmer the water is the
less oxygen it can hold -
solubility is also lower at lower
pressures and higher salinities

Disolved Oxygen (ml/L)

(1eq) ainssaid

Shallow water is more
likely to be warm,
lower pressure and
more saline (due to
evaporation) and
therefore requires less
to make anoxic

Oxygen Concentration vs Temperature

12

in (Sea) Water

4 — 20%(L
— 30 %
— 40 %

Salinity
— 0% ||
—_— 10 %

Temperature (°C)




Shallow Water Model

Explains distribution, stratal geometry, link to
unconformities

Warm, shallow, saline water has less oxygen to
start with which makes it easier to deoxygenate

Probably a seasonal anoxia model — a periodic
breakdown in the pycnocline helps recycle
nutrients from bottom to increase productivity

Should probably see evidence for currents if that
shallow




|_aminations

e Laminations are common in
black shales and are commonly
used as evidence of deep quiet
deposition as clay settled out
of suspension

New research suggests,
however, that these
laminations may actually form
In moving water with flow
rates up to 30 cm/s




Accretion of Mudstone Beds from
Migrating Floccule Ripples

Juergen Schieber,™* John Southard,? Kevin Thaisen® Science, 2007

Mudstones make up the majority of the geological record. However, it is difficult to reconstruct the
complex processes of mud deposition in the laboratory, such as the clumping of particles into floccules.
Using flume experiments, we have investigated the bedload transport and deposition of clay
floccules and find that this occurs at flow velocities that transport and deposit sand. Deposition-prone
floccules form over a wide range of experimental conditions, which suggests an underlying universal
process. Floccule ripples develop into low-angle foresets and mud beds that appear laminated after
postdepositional compaction, but the layers retain signs of floccule ripple bedding that would be
detectable in the rock record. Because mudstones were long thought to record low-energy conditions of
offshore and deeper water environments, our results call for reevaluation of published interpretations of
ancient mudstone successions and derived paleoceanographic conditions.

Floccules form from small clay particles and then behave like
sand grains — low-angle cross laminations form from migrating
ripples and then after compaction they look like laminations —
And lamiantions formed in such conditions might be shallow




Flocculation is Inmediate

Floccules form
Immediately after
clay addition to
flume current.

Fundamentally it
does not matter
whether

- distilled,

- freshwater, or

- seawater
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The Inside Scoopn on Floccules......
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“Bedload” Mud Travels as Ripples.................

SUBSIAIC5E ],

1U Shiale Research

/U Shale Research




fJ{f"Jﬂ?’J J:’me

Clay ripples on a partially eroded clay bed (also consisting of ripples), flume channel
IS 25 cm wide. /U Shale Research
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Caption, (see
next slide)
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Reasons for Silt-Clay Interlamination 2

Fluctuating Flow Strength?

e LR
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Overriding Travelling
Cohorts of Similar Grains?

C = clay floccules
M = mixed clay/fine silt floccules

CS = coarse silt

WD |Pressure| 6/1/2009 | — — Il Shale Research
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Reasons for Silt-Clay Interlamination 2

Fluctuating Flow Strength?
NO — Flow Constant

Overrldlng Travelling
Cohoﬂs7

Silt-Clay with 3:1 '
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A close look at the Marcellus reveals some
lenticular bedding and low angle cross-bedding
consistent with Schieber’s experiments — also
some burrows




Laminations form In moving water

« Schieber’s work shows that at least some laminations in
shale are produced not in still water but in moving water
up to 30 cm/s as ripples of clay floccules migrate across
sea floor

Silt/clay laminations don’t have to indicate major changes
In energy but can form at the same time due to segregation
of clay and silt into alternating migrating ripples that again
can form in water moving at 30 or 35 cm/s.

This helps a shallow water model and Schieber has
published extensively on other evidence that black shales
are deposited in shallow water— he will be working with
organic matter this fall and is looking for industrial support
- ]schiebe@indiana.edu




Some beds are laminated while others look
more disturbed- these could be storm beds

Light colored grains in core are not silt but
small fossils

Fossils present mainly planktonic, but
some benthic forams and ostracodes have
been found
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1925 ft. Styliolina fissurella and ostracode fragments and possible
forams (Terra Tek)




Beaver Meadows #1
Core

CALCITE

RHOB (g/cc)

TOC (%)

Formation [

100

2

265 3

108 6 4 2 0
b1

Marcellus Shale

Oatka Creek
(Gray Shale)

QOatka Creek
(Black Shale)

Cherry Valley
Limestone

Union Springs
(Black Mudrock)

Onondaga
Limestone

Measured TOC and calcite
content on Beaver
Meadows core 1 per foot

TOC matches density —
shading values below 2.65
g/cc seems to line up well
with TOC>1.5%

Calcite percentage also
closely tracks GR at base,
gray (silty) shale at top




Beaver Meadows #1 Core Darker gray = more organic
rich
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Beaver Meadows #1 Core Darker gray = more organic
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Beaver Meadows #1 Core Darker gray = more organic
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West Marcellus Cross Section East
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Each TOC rich mudrock unit becomes more OC-rich to west until it
pinches out and more clay rich and less OC-rich to the east

Limestones onlap and pinch out to west and grade into siltstone or
shale to east

The Union Springs Shale and Cherry Valley Limestone pinch out in
western NY, Oatka Creek pinches out under Lake Erie to west
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The Union Springs Shale and Cherry Valley Limestone pinch out in
western NY, Oatka Creek pinches out under Lake Erie to west
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The Marcellus Shale is absent from western NY where they onlap and
pinch out and thickest in southeast — There is no Marcellus equivalent

to the west and this area was probably exposed land - how deep could
the water have been during Union Springs deposition?
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Total thickness organic-rich Marcellus
(>1.5% TOC)

METERS

If all the organic-rich beds are summed, the map looks like this — thin
to west, much thicker to east — one critical question is how thick does
the formation need to be to make economic wells — some have

suggested 50 feet — it Is a moot point for anything thinner than 50 ft...
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If all the organic-rich beds are summed, the map looks like this — thin
to west, much thicker to east — one critical question is how thick does
the formation need to be to make economic wells — some have

suggested 50 feet — it Is a moot point for anything thinner than 50 ft...
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Not all Marcellus is in the Gas Window — Only
the area east of the 1.1 Ro line — Very high
maturity values in southeast

Western NY Is not mature anyway
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Marcellus Thermal Maturity

Not all Marcellus is in the Gas Window — Only
the area east of the 1.1 Ro line — Very high
maturity values in southeast

Western NY Is not mature anyway




Average TOC from top organic-rich to base

TOC increases to west — this is partially due to
greater maturity in east but also probably due at
least in part to original depositional OC values




Average TOC x Total Organic Rich Thickness T

Southeast is still best — northeast not as good
and there are high values in a north-south
trending zone in east-central area

This iIs an attempt to capture organic richness and thickness — this
map will improve with more data
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Burial Depth — Marcellus outcrops to north and east and is more than
6000 feet deep in Sullivan and Delaware Counties




Fairway Map — Marcellus Shale
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Color Contours — Organic rich thickness
Black contours burial depth

Best areas probably where thickest and deepest — A key question Is
how deep the shale needs to be to produce economically — some shales

are only economic at >4000 feet, others appear to be profitable at
shallower depths
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Detacment and Compressional
Structural Features in Marcellus

* In the eastern part of NY, there Is abundant
evidence of bedding plane slip and compressional
tectonics in the Union Springs Member of the

Marcellus

This could have a significant impact on production
and create heterogeneity within the most organic-
rich part of the Marcellus in the east

It is very clear at out main Marcellus outcrop
tomorrow afternoon




Tectonics of the Central
Appalachians

after Rodgers.
1870

Bosworth, 1984 and
others have discussed
the structural features
found In the Union
Springs in eastern NY

Bosworth states that
these features only
occur east of where salt
pinches out in NY

Bedding plane slip,
duplexes, contorted
bedding, intense
fracturing,
mineralization and
more occur within most
organic rich part of
Marcellus




Salt Extent
and
Thickness

If Bosworth (1984) is correct compressional features may occur from
pinchout of salt to outcrop belt in east




Salt Extent
and
Thickness

If Bosworth (1984) is correct compressional features may occur from
pinchout of salt to outcrop belt in east




Slickensides formed on bedding plane in lower Union Springs —
these were oriented N-S




Some of Union Springs looks like coal due to tectonic movement




Significant compressional features




Significant compressional features leading to some fracturing




And mineralization — saddle dolomite and calcite from fracture fill




Tectonized beds thicken and thin throughout Union Springs




Tectonized bed truncated in Union Springs




Anticline formed due to slip on salt

& Marcellus
Onondaga

Salt
Lockport

Utica
Trenton

Detachement zone interpreted to jump from salt in west to Union Springs
In east — significant amount of movement to make these structures




Devonian Hamilton Group

Silurian & Lower Devonian Units
Taconic Allochthon
cambro-Ordovician Sheltf Rocks

e Exposures of Union Springs Shale , .
™ Direction of Plateau Overthrusting 10 Kms

1
f. ¢

Bosworth interpreted main direction of slip to be WNW and the
timing to be late Acadian or Alleghenian - should it be N-S?




Ordovician Utica Shale
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Utica Shale deposited during Ordovician Taconic Orogeny
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SEA LEVEL

B nrorh America B olcanic Arc

Bradley and Kidd (1991) model for foreland basin response
to Taconic Orogeny — During Trenton-Utica deposition, this
high breaks down and there is very common normal faulting
affecting depositional trends —Jacobi and Mitchell, Brett and
Baird and others have long recognized the impact of these
faults on sedimentation but it is hard to do this with logs only




East Canada Creek

Grabens

New York State

. 1 Thruway

East Canada Creek

The Mohawk Valley has numerous normal
faults that were active during deposition of
the Utica, some with thousands of feet of
'[hFOW, others with less Jacobi and Mitchell, 2002
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The organic rich Utica thickens into some of these grabens — this
could have a major implication for where the Utica will be economic
(from Baird and Brett, 2002)




WEST Middle Ordovician chronostratigraphic cross-section EAST

Trenton Falls across the Mohawk Valley ss—ss—wsr—wr— 20 km Schenectady

SERIES

modified from Goldman et al., 1994

Frankfort Fm. Removed by recent uplift

modified

¥ most organic-rich

Cincinnatian
Edenian |Maysv. | STAGE

Schenectady Fm.

Steuben Lst.
SO Dolgeville Fm.
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Napance Lst T e sl L

Outcrop Stratigraphy from Mohawk Valley — Utica consists of Flat

Creek (which is time-equivalent to Trenton Limestone) and Indian

Castle Shales (which postdates Trenton) — the beds with the highest
TOC immediately overlie or are laterally-equivalent to
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Indian Castle Black
Shale (little carbonate,
TOC (1-3%)

Thruway Disconformity

(up to several million yrs
missing)

Dolgeville interbedded
limestone and black shale
(shales have up to 3%
TOCQC)



Thruway Disconformity

e Baird and Brett (2002) - drowning unconformity
— deep water throughout but non-deposition for up
to several million years

Jacobi and Mitchell (2002) — Thruway
disconformity is a slide scar where upper Trenton
slid into trough

This work — subaerial unconformity modified by
transgression in anoxic water where there may
have been some corrosion
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Logs from well with high-
TOC in Utica Shale - TOC
logs shaded red where
TOC>1% (TOC from
cuttings analysis)

Density log tracks TOC —
lower values = higher TOC

Utica i1s composed of a low
Organic regional shale at
top and the relatively high-
organic Indian Castle
Shale

The Dolgeville and Flat
Creek are time-equivalent

to Trenton and also have
relatively high TOC

31-077-10834-00-00

GR RHOB TOC M
0 200 2 _ 3 1|6 3 0
LS
‘:E i §
1 {
$ 3
5 i
S|
Indian g
Castle 8 ; |
Shale & & |
S
C_Lt; - | 4
O o2 %
Dolgeville L
<
Flat Cre klgg i
Black River ; } S
Beekmantown ?2‘ E
B i




W Black River-Trenton-Utica Cross Section
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W Black River-Trenton-Utica Cross Section
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Organic-rich interbeds extend into Trenton Group Limestones — Trenton
Limestone Fields occur where Steuben Limestone seals underlying organic rich
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Trenton in the southern part of the play is at <3000 feet

highly overpressured reservoirs (19 pound mud) occur where




Steuben Limestone Isch — could be seal on
underlying gas bearing shales in interbedded
facies
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Very promising looking porosity in interbedded facies right near
the margin with the shale basin in Terry Hill South Field — may
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Very promising looking porosity in interbedded facies right near
the margin with the shale basin in Terry Hill South Field — may
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Linear trend of pinchout lines up
with trend of fault-controlled HTD
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faults moved in Lower Indian Castle time — likely to be more of these features
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Tectonic high moves to west from Black River to basal Trenton
time — western NY also becomes a high — fault-controlled
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Thickness of Utica and
Trenton Combined

Organic-rich shale mainly on
cratonward side of basin — not
deepest part

Organic-rich shale mainly on upthrown shallow side of fault
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Estimated total thickness of organic-rich Utica (including Flat
Creek, Indian Castle speculative in east where there is little data
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Model for the origin of Thruway Disconformity — “footwall uplift”
- as big normal faults move to east, crust must rise to west to
accommodate — it really is an angular unconformity — this is

highly oversimplified but the idea may apply here
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TOC map for Ordovician Utica Shale plotting highest value for
each well in northeastern US — IN NY highest TOC to southeast
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Marcellus Fairway (yellow)

Special: 2 for 1- Utica and Marcellus fairways overlap in southern
counties




Thickness between Utica and Marcellus not the same everywhere —
It is less in eastern NY




Summary

 Utica also appears to have been deposited In
relatively shallow water on the west side of
the basin, not the deepest part which is
filled with organic-poor siliciclastics

 Utica was deposited during period of
tectonic activity and best wells might be
drilled into grabens where organic-rich
section Is thickest
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74-NY 5 has Lower Indian
Castle, Dolgeville and Flat
Creek Members of Utica

Highest TOC values in basal
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unconformity and in Lower
Indian Castle

This may be from the east
side of the graben
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74NYO05 Flat Creek Detailed TOC

Formation Core Desc.
(G.Baird)
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