Carbon Sequestration In New York State: A Decade of Research

Brian Slater 4/30/2014

Presentation Layout

- WHY? Carbon Dioxide (CO₂) in the atmosphere
- HOW? Basics of carbon sequestration

• WHERE? A look at projects across New York

- Jamestown Project
- AES Cayuga Project
- Trenton-Black River Potential
- TriCarb Project
- MRCSP Offshore Research

CO₂ in the atmosphere

Keeling Curve

From: Petit et al., 2004

From: Petit et al., 2010

CO_2 in ice cores

The Greenhouse Effect

Greenhouse Gases in the Atmosphere

Planets and atmospheres

Mars Thin atmosphere (Almost all CO₂ in ground) Average temperature : - 50°C

Earth 0,03% of CO₂ in the atmosphere Average temperature : + 15°C

> Venus Thick atmosphere containing 96% of CO₂ Average temperature : + 420°C

Greenhouse Gases in the Atmosphere

Greenhouse Gases	Chemical Formula	Atmospheric Concentration
Carbon dioxide	CO ₂	392600 ppbv
Methane	CH_4	1874.00 ppbv
Nitrous oxide	N_2O	324.000 ppbv
CFC-12	CCl_2F_2	0.53100 ppbv
CFC-11	CCl₃F	0.23800 ppbv
HCFC-22	CHCIF ₂	0.10500 ppbv
All Other		0.28900 ppbv

Greenhouse Gases in the Atmosphere

Greenhouse Gases	Chemical Formula	Atmospheric Concentration
Carbon dioxide	CO ₂	392600 ppbv
Methane	CH_4	1874.00 ppbv
Nitrous oxide	N ₂ O	324.000 ppbv
CFC-12	CCl_2F_2	0.53100 ppbv
CFC-11	CCl₃F	0.23800 ppbv
HCFC-22	CHCIF ₂	0.10500 ppbv
All Other		0.28900 ppbv

Carbon Dioxide Information Analysis Center

Average Global Surface Temperature

Land & Ocean Temperature Departure from Average Jan 2014 (with respect to a 1981–2010 base period)

Data Source: GHCN-M version 3.2.2 & ERSST version 3b

CO₂ and Temperature

From: Petit et al., 2004

CO₂ and Temperature

From: Petit et al., 2004

The Cretaceous Thermal Maximum (Greenhouse Earth)

- CO₂ levels greater than 1000ppm
- Equatorial temps were 3°- 5°C degrees higher
- Polar temps were 20°- 30°C higher
- Polar forests: evolution of conifers and ferns
- Tropical waters as far away as 40° from the equator

The Cretaceous Thermal Maximum (Greenhouse Earth)

- CO₂ levels greater than 1000ppm
- Equatorial temps were 3°- 5°C degrees higher
- Polar temps were 20°- 30°C higher
- Polar forests: evolution of conifers and ferns
- Tropical waters as far away as 40° from the equator

"Relatively" Rapid sea level rise: widespread shallow seas

Coastal Population

• 123.3 million people (39%) of the US population lives in Coastal Shoreline Counties

• As of 2010, ~2.9 billion people, >40% of the world lives within 100km (60mi) of the coast.

Sou rce: U.S. Census Bureau, Decennial Census of Population and Housing: 1960; Population Estimates Program: 2008.

New York City with 5 foot sea level rise

New York City with 12 foot sea level rise

New York City with 25 foot sea level rise

Boston Harbor Today

Boston Harbor with 5 foot sea level rise

Boston Harbor with 12 foot sea level rise

Boston Harbor with 25 foot sea level rise

Back Bay, New York City Today

Back Bay, New York City with 5 foot sea level rise

Back Bay, New York City with 12 foot sea level rise

Back Bay, New York City with 25 foot sea level rise

Harvard Campus with 12 foot sea level rise

Jefferson Memorial with 25 foot sea level rise

Thermo-haline Circulation

Figure 1. Energy-related emissions by state, 2010

million metric tons carbon dioxide

Figure 2. Per-capita energy-related carbon dioxide emissions by state, 2010 metric tons carbon dioxide per person

US 2012 CO₂ Emissions

US 2012 CO₂ Emissions

Industrial 17.8%

Transportation 34.3%

Electrical Power 38.4%

Residential 5.6% Commercial 3.9%

Source: Energy Information Administration

US 2012 CO₂ Emissions

Source: Energy Information Administration

Geologic Carbon Sequestration aka Carbon Capture & Storage (CCS)

The use of porous and permeable rock formations to store carbon dioxide that would otherwise be emitted into the atmosphere.

Locked in Rock Sequestering Carbon Dioxide Underground To help reduce Concentrations

To help reduce atmospheric concentrations of carbon dioxide, researchers are investigating ways to bury it deep underground.

llnl.gov

Reservoir Characteristics

Porosity - CO_2 is stored in the pore space between the grains of a given rock unit.

Permeability – the pores of a sequestration reservoir must be interconnected so that CO_2 can flow away from the injection point.

Cap Rock – There must be one or more confining layers (impermeable rock) overlying the reservoir to prevent upward leakage.

Depth – Deeper formations have higher temperatures and pressures which allow CO_2 sequestered as a supercritical fluid thereby allowing more to be stored.

Supercritical CO₂

At 31°C and 73 bars, CO_2 is stable in a supercritical state.

Supercritical CO_2 is over 300 times more dense than gaseous CO_2 at the surface.

Increasing security

Possible Leakage

CO₂ migrates up dip to shallower depths

CO₂ pressure fractures the seal

CO₂ migrates up an open fault

CO₂ pressure opens a fault or pathway

CO₂ escapes through a gap in the seal

CO₂ escapes via a poorly abandoned well

Leakage Detection

ATMOSPHERIC MONITORING

Seismic Monitoring of Injected CO₂

Worst Case Scenario

Lake Nyos: Camaroon, West Africa

- Deep crater lake on the flank of an inactive volcano
- Pocket of magma beneath the lake leaks CO2 in the water
- August 21, 1986, a nearby landslide caused the lake to suddenly emit a large cloud of CO2
- Because CO2 is more dense than air, the cloud flowed down the hillside and into a town where it suffocated 1,700 people and 3,500 livestock

Worse Case Jcenario

Lake Nos: Camaroon, Wost Africa

Deep choser lake on the flanker an inactive volcano
Pocket o magma beneather a lake leaks CO2 in the water
August 21, 986, a nearly andslide caused the lake to Suddenly emit warge close of CO2
Because CO2 more dense than air, the cloud flowed down the hillside and a town where it suffocated 1,700 people and 3,500 lives. Scientists at the University of Edinburgh, UK, collected data from 286 naturally occurring CO_2 seeps across Italy and Sicily. They then calculated the risk of death from CO_2 poisoning for the 20 million people living near those sites. All the seeps were associated with natural underground CO_2 reservoirs, volcanoes or aquifers that were leaking between 10 and 100 tons of CO_2 per day.

They found that in the last two decades 11 people died at the seeps, making the <u>risk</u> of death around 2.8 x 10^{-8} or 1 in 36 million. By comparison, the risk of being struck by lightning is around 1 in 43,000. 'It was a surprise to us,' said Roberts. <u>'We weren't</u> really expecting to find values that were quite so low.'

What's more, their estimate represents a worst case scenario. <u>Although CO₂ might leak in a similar way from a CCS site</u>, <u>models suggest the leakage rate would be</u> <u>lower than from natural stores</u>. Perhaps more importantly, <u>CCS sites would be</u> <u>subject to scrupulous monitoring</u>, unlike the Italian sites. 'You'd be able to predict a leakage well before the CO₂ got to the surface," – *Hayley Birch*

Current Carbon Sequestration Projects Around the World

From CO2CRC

Current Carbon Sequestration Projects Around the World

From CO2CRC

Sleipner Oil & Gas Field

- 250 km west of Norway
- owned and operated by Statoil
- started producing in 1974, CCS since 1996

• produces from the Heimdal Sandstone Formation (8200')

- ~300Mbbl of oil / day
- 36MMCF of gas / day
- 9.5% CO₂ (1 million tons / yr)

• Sequester the CO_2 in the Utsira Sandstone Formation (~2600')

• Statoil would have to pay \$1 million / day in Norwegian taxes if they vented the CO₂ into the atmosphere

Injection is saved Statoil over
\$6 billion over the last 18 years

Illinois Basin – Decatur Project

• Test project with the goal of storing 1 million tons of CO₂

• Partially funded by the Department of Energy with matching funds from private industry

• Target reservoir is Mt. Simon Sandstone which is 1,000 to 2,000 feet thick and over 6000' deep in central Illinois

• Sequester the CO₂ from the nearby ADM ethanol fermentation plant at a rate of 1,000 tons / day

 Injection began in November 2011 and had successfully sequestered over 500,000 by August 2013

Rock Samples: Core and Cuttings

Rock Samples: Thin Sections

Wireline Well Logs

Grain Densities

Clay (Shale)	2.45 g/cc
Quartz (Sandstone)	2.65 g/cc
Calcite (Limestone)	2.71 g/cc
Dolomite	2.86 g/cc
Anhydrite	2.95 g/cc
Pyrite	5.00 g/cc

Grain Densities

Clay (Shale)	2.45 g/cc			
Quartz (Sandstone)	2.65 g/cc			
Calcite (Limestone)	2.71 g/cc			
Dolomite	2.86 g/cc			
Anhydrite	2.95 g/cc			
Pyrite	5.00 g/cc			

Grain Densities

Clay (Shale)	2.45 g/cc
Quartz (Sandstone)	2.65 g/cc
Calcite (Limestone)	2.71 g/cc
Dolomite	2.86 g/cc
Anhydrite	2.95 g/cc
Pyrite	5.00 g/cc

Dolomite

Grain Densities

Clay (Shale)	2.45 g/cc			
Quartz (Sandstone)	2.65 g/cc			
Calcite (Limestone)	2.71 g/cc			
Dolomite	2.86 g/cc			
Anhydrite	2.95 g/cc			
Pyrite	5.00 g/cc			

Dolomite

855-1	857-1	902-1	816-1	728-1	642-3	598-1	642-2	599-1
GR NPHE	84008 2.5 28 20 16 16	Рисси ол: 12 190 12 1	98 20 150	68 0 10 10	007 152 152 0	5408 50 50 10 10 10 10 10 10 10	0 10 0 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0	Anda La S S S S S
						7 3		
			2					

Seismic Imaging

(Wyoming Co.)

(Allegany Co.)

The Jamestown Project

- Jamestown Bureau of Public Utilities (BPU) makes its own electricity using a 50MW coal fire power plant
- Plan to replace the current plant with an oxycoal clean plant with near-site sequestration
- Received partial funding from the Department of Energy to investigate CCS potential in the area

Target Reservoir

Potsdam Sandstone and the Interbedded Sandstones and dolomites of the Galway Formation.

Between 6,000 and 7,000 ft. deep near Jamestown

Approximately 1,000 ft. thick

Galway Sst	
Potsdam Sst	

Existing Data: Wells in Chautauqua County

Over 6,200 deep wells in Chautauqua County

Most are natural gas wells producing from the Medina Sandstone

Existing Data: Wells in Chautauqua County

Over 6,200 deep wells in Chautauqua County

Most are natural gas wells producing from the Medina Sandstone

Only 10 wells deeper than 6,000 feet

Harrington 1

Miller #2

- Piggyback with Unbridled Energy
- Drilling March May 2009
- Total Depth: 7,308 feet

Approximately 155' of core

- Run 1: Little Falls
- Run 2: Rose Run
- Run 3: Upper C-Sand

Core	Тор	Bottom	Length	Recovery	
Run	(feet)	(feet)	(feet)	(%)	
1	6254	6308	54	100%	
GAP	6308	6328	20		
2	6328	6342	13.2	94%	
3	6342	6372	30	100%	
GAP	6372	7060	688		
4	7060	7120	58.5	98%	
		TOTAL	155.7		

Sidewall Cores

31 sidewall core collected

- 13 from Rose Run Sand
- 12 from B-Sand
- 6 from C-Sand

Core Description

Rock properties such as mineral composition, sedimentary structures, texture, and grain type were recorded at a 6" resolution and displayed in graphical

Lab Results

- Porosity and permeability measurements from Weatherford Labs
- Data includes samples of reservoir rock and cap rock
- Blue points are sidewall cores
- Red points are samples from continuous core

PERMEABILITY VERSUS POROSITY

Vacuum Dried at 180°F Net Confining Stress: 1200 psi

Lab Results

 Ideal sequestration reservoirs have porosities greater than 5% and permeabilities over 1 millidarcy

PERMEABILITY VERSUS POROSITY

Vacuum Dried at 180°F Net Confining Stress: 1200 psi

Lab Results

- Ideal sequestration reservoirs have porosities greater than 5% and permeabilities over 1 millidarcy
- Miller 2 samples group at around 1 to 6% porosity and <0.1 millidarcys

PERMEABILITY VERSUS POROSITY Vacuum Dried at 180°F Net Confining Stress: 1200 psi

Borehole Logs

Borehole Logs

Thin Sections: Rose Run (Reservoir)

Interpretation

Secondary mineralization: The sandstones of the Galway and Potsdam formations may have been porous and permeable when they were deposited, but at some point after deposition, mineral-rich

fluids were introduced to the area which led to the precipitation of dolomite. The Miller #2 site is not suitable for sequestration of CO_2 , however, other nearby areas may not have been altered in this way and therefore could have reservoir qualities more appropriate for injection of CO_2 .

AES Cayuga Power Plant Project

- Coal-fired power plant located on the eastern shore of Cayuga Lake
- Produces 306 mW of electricity and 2.4 million tons of CO₂ per year

Peri	od	Group	Formation	Lithology	Taraat
iian	Upper	Genesee	Geneseo Shale		Reservoir
Devor	Middle	Hamilton	Tully Lst Marcellus Shale	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	The Oueenston is actually a shale
		TriStates	Onondaga Lst Oriskany Sst		in some parts of the State however
Silurian	Lower	Helderberg	Manlius Lst Rondout Dol Akron Dol		it occurs as a sandstone in portions
	Upper	Salina	Bertie Shale Syracuse Salt Vernon Dol		of central and western NY.
		Lockport	Lockport Dol		With the help of the State Museum,
			Rochester Shale Irondequoit Lst	Herkimer	Kathryn Tamulonis studied the
	Lower	Clinton	Sodus Shale	Oneida	sequestration potential near the Cayuga power plant as part of her PhD dissertation from Cornell.
	-	Medina	Grimsby Sst	· · · · · · · · · · · · · · · · · · ·	
Ordovician	Upper -		Lorraine Slst Utica Shale		
		Trenton / Black River	Trenton Lst Black River Lst		Queenston Sst
	Lower	Beekman-	Tribes Hill Lst		
mbrian	Upper	town	Little Falls Dol Galway Sst		
C	Dura	analanian Daaana	Potsdam Sst		
Sandstone Shale ZZ Dolomite Limestone					

Queenston Core – Delaney Well

1 in

= 16 years of output

Hydrothermal Dolomite

Trenton – **Black River Gas Production**

500,00 400.000

200.00

2.000.000

1,000,000

1.600.000

1.400.000 MCF 100000

> 800.000 000.000

> 400,000

200.00

Year

Wilson Hollow

Terry Hill

Year

Enhanced Gas Recovery (EGR)

The use of injected fluids to repressurize a reservoir and push the remaining hydrocarbons toward production wells.

This technique has bee in practice for over a hundred years, but water is usually used for cost purposes.

Depleted oil and gas reservoirs are proven containers that have safely held hydrocarbons for millions of years.

Companies can recoup the cost of sequestration by the production of more oil or gas.

Field	Avg. Depth (feet)	# Wells	Production (mmcf)	Storage Capacity
Quakenbush Hill	9500	12	110,438	15.83
Wilson Hollow	9500	11	46,417	6.65
Muck Farm	7000	4	10,165	1.46
Glodes Corners Road	7000	15	8,678	1.24
Terry Hill South	9000	7	9,371	1.34
County Line	9000	4	3,190	0.46
TOTAL			188,260 billion ft ³	26.98 million tons

Newark Rift Basin – TriCarb Project

Africa

South

(From Ron Blakey website)

(From Ron Blakey website)

WEST

EAST

WEST

EAST

Palisades Sill

Previous Work: The Newark Basin Coring Project

From Olsen et al., 1996

- 54 samples collected
- 9 sent to OMNI labs for analysis
- Lab results indicate average porosity of 9% and permeabilities average 0.9 mD
- Thinsections made from all 54 samples agree with lab results

The Tandem Lot Well

West Milford

1 2 mi

5 km

Seismic Survey

Uninterpreted Seismic Line

Interpreted Seismic Line

The Tandem Lot Well

- Drilling began on August 7, 2011
- Reached a Total Depth of 6,881 feet
- 150' feet of continuous core collected
- 50 sidewall cores
- Full suite of well logs
- The well was plugged and site was completely restored by December 2011

Depth in Feet

Depth in Feet

Sidewall Core: 2,832 feet

Porosity **15.4 %** Permeability

257.00 mD

Sidewall Core: 3,053 feet

Not only are the target formations shallower along the eastern edge of the basin, but the Palisades Sill is at the surface and has ben partially eroded, so less of it needed to be drilled through.

energy where an and the second s

Lockatong (?) Stockton (?)

50%

Test Well 4: TW-4

Location of TW-2 well

Test Well 4: TW-4

- Began drilling in August of 2013
- Drilled first 650 feet and collected cuttings
- Collected 4-inch core through the bottom of the sill
- Continued coring with a
 2.5 inch bit to a depth of
 1803 feet

Bottom of Sill at 716.5 feet

NOT THE REAL PROPERTY OF THE R

Predominantly Sandstone (>85%) from 1000' – 1700'

Stockton Formation?

Preliminary Lab Results

- 10 samples taken from the TW-4 core
- 1 mudstone, 9 sandstones
- Porosity in Sandstones range from 9.6 to 17%
- Most permeabilities over 1 mD

The Future of TriCarb

- Analyze thin sections and logs from TW-4 well.
- Try to correlate units from the TW-4 well and Tandem Lot well

2 Questions to be answered

- Is the porous zone from the Tandem Lot Well present / deeper as you move to the center of the basin (central New Jersey)?
- Are there places in the center of the basin where the Stockton Formation is as porous as it is in the TW-4 well?

With additional funding and support, a deep well drilled in near the center of the basin would help answer these questions and justify additional research into the sequestration potential of the Newark Rift Basin

Offshore (Baltimore Canyon Trough)

Phases I and II focused on characterization of potential onshore geologic sequestration targets

With New York and Maryland, the addition of New Jersey in 2011 increased the coastline of the partnership to over 400 miles

Midwest Region Carbon Sequestration Partnership

Basement Contour Map

Basement drops off 14,000 meters (46,000 feet) in 50 miles from the New Jersey coastline.

> 46,000 ft (8.7 miles)

Basement Contour vs. Continental Shelf

The Baltimore Canyon Trough

Modified From USGS RC750, 1977

BCT Stratigraphy

Simplified stratigraphic column shows several sandstone units (potential reservoirs) and shale units (potential cap rocks)

BCT Stratigraphy

Simplified stratigraphic column shows several sandstone units (potential reservoirs) and shale units (potential cap rocks)

Our initial research has focused on the Logan Canyon Sandstone with the Dawson Canyon and Sable Shale acting as primary sealing units.

Petroleum Exploration (1940's - 1980's)

BCT Cross Section

BCT Cross Section

South West

North East

Porosity

Facies / Lithology	n*	Ave. Φ (%)
Prograded shelf margin limestones	277	2.4
Transitional marine sandstones	619	6.1
Coastal Plain sandstones	1391	8.7
Fine-grained deltaic sandstones	729	9.2
Aggradded shelf-margin limetsones	189	8.5
Limestone buildups	3	12.2
Chalky Tubiphytes packstone	84	6.3
Shoal-water oolite grainstone	53	17
Shelf-margin deltaic sandstones	163	18.2

(From Prather, 1991)

*n = number of beds

Porosity data from 3 exploratory wells in the study area show high porosity beds in both sandstone and limestone units.

Capacities for the 2,000 square mile target area

Reservoir Unit	Reservoir Depth	Reservoir Temperature	Resevoir Pressure	Reservoir Thickness	Reservoir Area	CO2 Mass Storage Capacity (in MMT) @ 20% Porosity		
	feet	deg F	psi	feet	acre	displace 1%	displace 2.5%	displace 4%
Upper Logan Canyon	8,000	160	3,300	932	1,280,000 (2,000 mi ²)	2,066	5,165	8,263
Lower Logan Canyon	8,900	180	3,600	650	1,280,000 (2,000 mi ²)	1,383	3,457	5,531
Total				1,582		3,449	8,622	13,794

2010 CO₂ Emissions (Million Metric Tonnes, MMT)

State	Electric Power	Industrial
Pennsylvania	116.58	39.20
New York	37.76	10.29
Maryland	24.52	4.57
Massachusetts	17.99	3.62
New Jersey	17.62	9.18
Connecticut	7.62	1.99
Delaware	4.17	1.55
TOTAL	109.68	70.4

Capacity ranges from 19 - 77 years of storage at current emission levels

Future Offshore Work

Phase 3.2 is about to begin

- Acquire core samples from the Delaware Geological Survey to make thin sections and test for porosity and permeability
- Use lab porosity and permeability measurements to calibrate well logs
- Look at seismic data to investigate continuity of sandstone units between wells
- Detailed analysis of shale units and other cap rocks

With additional funding and support, an offshore well could be drilled to supplement current data with new, more accurate measurements

Just a piece of the pie

Thank You

Formation Fluid Chemistry

Water Quality	TDS mf/L
Fresh Water	< 1,000
Brackish Water	1,000 - 10,000
Saline Water	10,000 - 30,000
Brine	> 30,000

1.01		3,	058 ft.
Parameter	Result		Units
General Analysis			
Specific Gravity	1.004	@ 25°C	
Observed pH	7.448	@ 25° C	
Resistivity at 77°F	97.675		ohm-cm
Conductivity at 77°F	10.2		mS/cm
Salinity	1099		
Total Dissolved Solids			
Evaporated @ 110°C	9742		ma/l
Measured	7550		mg/L
Calculated	6552		mg/L
culculated			ing/c
Anions	mg/kg	meq/L	
Fluoride (F)	(00.2	17 224	
Chloride (CI)	608.2	17.224	
Nitirite (NO2)	5.50	0.070	
Bromide (BI-)	5.59	0.070	
Dhosphate (DO4)			
Sulfato (SOA)	2331 72	48 741	
Sullate (SO4)	2331.72	40.741	
Cations	mg/kg	meq/L	
Lithium (Li)	0.4	0.05	
Sodium (Na)	2108.7	92.09	
Ammonium (NH4)	44.0	2.45	
Potassium (K)	23.5	0.60	
Magnesium (Mg)	44.3	3.66	
Calcium (Ca)	259.9	13.02	
ICP Metals	mg/kg	meq/L	
Aluminum (Al)			
Boron (B)	2.0	0.6	
Barium (Ba)	0.27	0.0039	
Copper (Cu)			
Iron (Fe)	3.27	0.1	
Manganese (Mn)	0.65	0.0	
Phosphorus (P)	0.32	0.0	
Lead (PD)	775 0	10 6	
Sulphur (S)	11.0	48.6	
Strontium (Sr)	3 221	0.074	
Zinc (Zn)	0.29	0.004	
	0.23	0.0000	
ORGANIC ACIDS	mg/kg		
Glycolic	27.3		
Formic	8.5		
Acetic	218.0		
Propionic	2.0		

1.02			2,322 f
Parameter	Result		Units
General Analysis			
Specific Gravity	1 002	@ 25°C	
Observed pH	7.499	@ 25°C	
Resistivity at 77°F	202.335	0	ohm-cm
Conductivity at 77°F	4.9		mS/cm
Salinity	552		
Total Dissolved Solids			
Evaporated @ 110°C	4308		ma/L
Measured	3537		ma/L
Calculated	3163		mg/L
Anions	ma/ka	mea/l	
Fluoride (F)	ing/kg	meqre	
Chloride (Cl)	287.6	8.1	
Nitirite (NO2)			
Bromide (Br-)	4.202	0.053	
Nitrate (NO3)			
Phosphate (PO4)			
Sulfate (SO4)	1110.7	23.2	
Cations	ma/ka	mea/L	
Lithium (Li)	0.403	0.058	
Sodium (Na)	898.3	39.2	
Ammonium (NH4)	16.0	0.89	
Potassium (K)	11.2	0.29	
Magnesium (Mg)	45.0	3.7	
Calcium (Ca)	134.5	6.7	
ICP Metals	ma/ka	mea/L	
Aluminum (Al)	5 5		
Boron (B)	2.0	0.21	
Barium (Ba)	0.27	0.0015	
Copper (Cu)	0.077	0.0024	
Iron (Fe)	0.021	0.0008	
Manganese (Mn)	0.17	0.012	
Phosphorus (P)	0.24	0.008	
Lead (Pb)			
Sulphur (S)	356.0	22.2	
Silicon (Si)	10.0	1.4	
Strontium (Sr)	1.7	0.039	
Zinc (Zn)	4.1	0.13	
ORGANIC ACIDS	mg/kg		
Glycolic	19.1		
Formic	3.4		
Acetic	39.8		
Propionic	3.0		

t.

Formation Fluid Chemistry

Water Quality	TDS mf/L
Fresh Water	< 1,000
Brackish Water	1,000 - 10,000
Saline Water	10,000 - 30,000
Brine	> 30,000

1.01		З,	058 ft.
Parameter	Result		Units
General Analysis			
Specific Gravity	1.004	@ 25°C	
Observed pH	7.448	@ 25° C	
Resistivity at 77°F	97.675	0	ohm-cm
Conductivity at 77°F	10.2		mS/cm
Salinity	1099		
Total Dissolved Solids			
Evaporated @ 110°C	9742		ma/L
Measured	7550		ma/L
Calculated	6552		ma/L
Aniona	ma er /le er	200 G St /I	5
Fluoride (F)	mg/kg	meq/L	
Chloride (Cl)	608.2	17 224	
Nitirite (NO2)	000.2	17.224	
Bromide (Br-)	5.59	0.070	
Nitrate (NO3)	0107		
Phosphate (PO4)			
Sulfate (SO4)	2331.72	48.741	
	4	12-11-11-11-11-11	
Cations	mg/kg	meq/L	
Lithium (Li)	0.4	0.05	
Sodium (Na)	2108.7	92.09	
Ammonium (NH4)	44.0	2.45	
Magnesium (Mg)	44.3	3.66	
Calcium (Ca)	259.9	13.02	
culeiuni (cu)			
ICP Metals	mg/kg	meq/L	
Aluminum (Al)	20	0.6	
Boron (B)	2.0	0.0	
Barlum (Ba)	0.27	0.0039	
lron (Fe)	3 27	0.1	
Manganese (Mn)	0.65	0.0	
Phosphorus (P)	0.32	0.0	
Lead (Pb)	0.52	0.0	
Sulphur (S)	775.8	48.6	
Silicon (Si)	11.0	1.6	
Strontium (Sr)	3.221	0.074	
Zinc (Zn)	0.29	0.0088	
ORGANIC ACTOS	ma/ka		
Glycolic	27.3		
Formic	8.5		
Acetic	218.0		
Propionic	2.6		

1.02			2,322 ft
Parameter	Result		Units
General Analysis			
Specific Gravity	1.002	@ 25°C	
Posicitivity at 77°F	202 335	@ 25 C	ohm cm
Conductivity at 77°E	40		mS/cm
Salinity	552		mb/cm
Total Dissolved Solids			
Evaporated @ 110°C	4308		mg/L
Measured	3537		mg/L
Calculated	3163		mg/L
Anions	mg/kg	meq/L	
Fluoride (F)			
Chloride (Cl)	287.6	8.1	
Nitirite (NO2)	1202	0.052	
Bromide (Br-)	4.202	0.053	
Dhosphata (DO4)			
Sulfato (SOA)	11107	23.2	
Sunate (SO4)	1110.7	25.2	
Cations	mg/kg	meq/L	
Lithium (Li)	0.403	0.058	
Sodium (Na)	898.3	39.2	
Ammonium (NH4)	16.0	0.89	
Potassium (K)	11.2	0.29	
Magnesium (Mg)	45.0	3./	
Calcium (Ca)	134.5	6.7	
ICP Metals	mg/kg	meq/L	
Aluminum (Al)			
Boron (B)	2.0	0.21	
Barium (Ba)	0.27	0.0015	
Copper (Cu)	0.077	0.0024	
Iron (Fe)	0.021	0.0008	
Manganese (Mn)	0.17	0.012	
Phosphorus (P)	0.24	0.008	
Sulphur (S)	356.0	22.2	
Silicon (Si)	10.0	14	
Strontium (Sr)	1.7	0.039	
Zinc (Zn)	4.1	0.13	
OPCANIC ACTOS	maller		
Glycolic	10 1		
Formic	34		
Acetic	39.8		
Propionic	3.0		

